Einblick in Verlustprozesse in Perowskit-Solarzellen ermöglicht Verbesserung der Effizienz

Die untersuchte Perowskit-Zelle hat bereits eine Fl&auml;che von 1 cm<sup>2</sup>.

Die untersuchte Perowskit-Zelle hat bereits eine Fläche von 1 cm2. © Uni Potsdam

<p class="MsoPlainText">Mit zus&auml;tzlichen Beschichtungen zwischen dem Perowskit-Halbleiter und den Loch- und Elektronentransportschichten (rote und blaue Linien) konnte das Team der Uni Potsdam den Wirkungsgrad weiter steigern.

Mit zusätzlichen Beschichtungen zwischen dem Perowskit-Halbleiter und den Loch- und Elektronentransportschichten (rote und blaue Linien) konnte das Team der Uni Potsdam den Wirkungsgrad weiter steigern. © Uni Potsdam

In Perowskit-Solarzellen gehen Ladungsträger vor allem durch Rekombination an Defekten an den Grenzflächen verloren. Rekombination an Defekten im Inneren der Perowskit-Schicht begrenzt  dagegen die Leistungsfähigkeit der Zellen gegenwärtig nicht. Diese interessante Einsicht konnten Teams der Universität Potsdam und am Helmholtz-Zentrum Berlin (HZB)  nun mit quantitativ äußerst genauen Photolumineszenz-Messungen an 1 cm2 großen Perowskit-Absorberschichten gewinnen. Ihre Ergebnisse tragen zur gezielten  Verbesserung von Perowskit-Solarzellen bei und sind nun in Nature Energy publiziert.

Selbst Solarzellen aus einem perfekten Wundermaterial würden niemals hundert Prozent des Sonnenlichts in elektrische Energie umwandeln. Denn die theoretisch maximal erreichbare Leistung ist begrenzt durch die Lage der  Energiebänder der Elektronen und durch die nicht vermeidbare Abstrahlung von Photonen (thermodynamische oder Shockley-Queisser-Grenze). Bei der Bandlücke von Silizium liegt diese Grenze bei 33 Prozent. Doch selbst dieser Wert wird in Wirklichkeit nicht erreicht. Denn Defekte unterschiedlicher Art sorgen dafür, dass ein Teil der durch Sonnenlicht freigesetzten Ladungsträger wieder verloren geht. Um sich dem Maximalwert anzunähern, gilt es daher die verschiedenen Defekte in Solarzellen zu untersuchen und zu ermitteln, welche Defekte auf welche Weise zu Verlusten führen. 

Die neuen Stars: Metallorganische Perowskite

Als besonders spannende, neue Materialklasse für Solarzellen gelten metallorganische Perowskit-Absorberschichten – in nur zehn Jahren ließ sich ihr Wirkungsgrad von drei Prozent auf über zwanzig Prozent erhöhen, eine rasante Erfolgsgeschichte. Nun ist es einem Team um Prof. Dr. Dieter Neher, Universität Potsdam und Dr. Thomas Unold, HZB, gelungen, die entscheidenden Verlustprozesse in Perowskit-Solarzellen zu identifizieren und damit den Wirkungsgrad dieser Zellen deutlich zu verbessern.

An bestimmten Defekten oder Fehlstellen im Kristallgitter der Perowskit-Schicht können Ladungsträger, also Elektronen oder „Löcher“, die gerade durch Sonnenlicht freigesetzt wurden, wieder rekombinieren und so verlorengehen. Ob diese Defekte aber bevorzugt im Inneren der Perowskit-Schicht sitzen oder eher an der Grenzfläche zwischen Perowskit- und Transportschicht, das war bislang unklar.

Verluste im Detail analysiert

Um dies herauszufinden, nutzten die Kooperationspartner die Methode der Photolumineszenz mit hoher Präzision und Orts- und Zeitauflösung. Mit Laserlicht regten sie die quadratzentimetergroße Perowskit-Schicht an und erfassten, wo und wann das Material als Antwort auf die Anregung wiederum Licht abstrahlte. „Diese Messmethode ist bei uns so präzise, dass wir die Anzahl der ausgestrahlten Photonen genau angeben können“, erklärt Unold. Und nicht nur das, auch die Energie der abgestrahlten Photonen wurde mit einer hyperspektralen CCD-Kamera genau erfasst und analysiert.

„Wir konnten so an jedem Punkt der Zelle die Verluste ausrechnen und dabei feststellen, dass die schädlichsten Defekte sich an den Grenzflächen zwischen der Perowskit-Absorberschicht und den Ladungstransportschichten befinden“, berichtet Unold. Dies ist eine wichtige Information, um Perowskit-Solarzellen weiter zu verbessern, etwa durch Zwischenschichten, die sich günstig auswirken oder durch veränderte Herstellungsmethoden.

Steigerung des Wirkungsgrads gelungen

Mithilfe dieser Erkenntnisse ist es der Gruppe um Prof. Dr. Dieter Neher und Dr. Martin Stolterfoht an der Uni Potsdam gelungen, die Grenzflächenrekombination zu verringern und dadurch den Wirkungsgrad der 1 cm2 Perowskit-Solarzellen auf mehr als 20 % zu erhöhen.

Zur Publikation in Nature Energy (2018):Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells; Martin Stolterfoht, Christian M. Wolff, José A. Márquez, Shanshan Zhang,Charles J. Hages,Daniel Rothhardt, Steve Albrecht, Paul L. Burn, Paul Meredith, Thomas Unold and Dieter Neher
Doi:10.1038/s41560-018-0219-8

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.