Elektronische Prozesse während der Katalyse mit neuartigem Röntgen-Spektroskopie-Verfahren beobachtet

Auch bei der Photosynthese spielen Mangan-Verbindungen als Katalysatoren eine Rolle.

Auch bei der Photosynthese spielen Mangan-Verbindungen als Katalysatoren eine Rolle. © HZB

Einem internationalen Team ist an BESSY II ein Durchbruch gelungen. Erstmals konnten sie elektronische Prozesse an einem Übergangsmetall im Detail  untersuchen und aus den Messdaten zuverlässige Rückschlüsse auf deren katalytische Wirkung  ziehen. Ihre Ergebnisse sind hilfreich, um gezielt katalytische Systeme, in deren Zentren Übergangmetalle stehen, für zukünftige Anwendungen zu entwickeln. Die Arbeit ist nun in Chemical Science, dem Open Access Journal der Royal Society of Chemistry, veröffentlicht.

Viele wichtige Prozesse in der Natur benötigen Katalysatoren: Atome oder Moleküle, die die gewünschte Reaktion ermöglichen, aber selbst unverändert aus ihr hervorgehen. Ein Beispiel ist die Photosynthese in Pflanzen, die nur mit Hilfe eines Proteinkomplexes möglich ist, in deren Zentrum vier Mangan-Atome sitzen. Oft spielen in solchen Prozessen sogenannte Redoxreaktionen eine entscheidende Rolle, bei denen die Reaktionsteilnehmer Elektronen austauschen und dabei reduziert (Elektronenaufnahme) bzw. oxidiert (Elektronenabgabe) werden. Katalytische Redoxprozesse in der Natur oder in der Technik gelingen oft nur dank passender Katalysatoren, in denen Übergangsmetalle eine wichtige Funktion übernehmen. 

Weiches Röntgenlicht von BESSY II

Solche Übergangsmetalle und insbesondere ihr Redox- oder Oxidationszustand lassen sich besonders gut mit weichem Röntgenlicht untersuchen. Bei der so genannten L-Kanten-Absorptionspektroskopie werden Elektronen aus der 2p-Schale des Übergangsmetalls angeregt, kurzfristig freie d-Orbitale zu besetzen. Aus dem Röntgen-Absorptionsspektrum lässt sich eine Energiedifferenz ermitteln, von der bekannt ist, dass sie den Oxidationszustand des Moleküls oder des Katalysators widerspiegelt. Wo genau im Katalysator während einer Redoxreaktion die Elektronen jedoch aufgenommen oder abgegeben werden, wie genau also sich die Ladungsdichte im Katalysator bei einer Änderung seines Oxidationszustandes verändert, war bisher weitgehend unbekannt. Dies lag vor allem daran, dass zuverlässige Methoden zur theoretischen Beschreibungen der Ladungsdichten in Katalysator-Molekülen fehlten und dass zuverlässige experimentelle Daten nur schwer zu erhalten sind. Befinden sich nämlich die Übergangsmetalle in größeren, organischen Molekülkomplexen, wie sie typisch sind für funktionierende Redox-Katalysatoren, so wird die Untersuchung äußerst schwierig, da die Röntgenstrahlung sofort zu Schäden in der Probe führt.

Probe in Lösung in unterschiedlichen Oxidationszuständen untersucht

Erstmals ist es nun einem internationalen Team vom HZB, der Uppsala University (Schweden), dem Lawrence Berkeley National Laboratory in Berkeley (USA), der Manchester University (Großbritanien) und dem SLAC National Accelerator Laboratory in Stanford (USA) mit Messungen an BESSY II gelungen, Mangan-Atome in unterschiedlichen Verbindungen und Oxidationszuständen in operando – also während verschiedener Oxidationsstufen – zu untersuchen.  Die Forscher um Philippe Wernet brachten dafür die Proben in unterschiedliche Lösungsmittel, untersuchten den Flüssigkeitsstrahl im Röntgenlicht und verglichen die gemessen Daten mit neuartigen Rechnungen aus der Gruppe um  Marcus Lundberg von der Uppsala University. „Es gelang uns zu ermitteln, wie und vor allem warum sich die Röntgen-Absorptionsspektren mit den Oxidationszuständen verschieben“, so der Theoretiker Marcus Lundberg. Die beiden Doktoranden Markus Kubin (HZB) mit seiner experimetnellen und Meiyuan Guo (Uppsala University) mit seiner theoretischen Expertise spiegeln den interdisziplinären Ansatz der Studie wider und trugen zu gleichen Teilen als Erstautoren der Studie bei.

Durchbruch durch Kombination von Theorie und Experiment

„Wir haben einen neuartigen experimentellen Aufbau mit quantenchemischen Modellrechnungen  kombiniert und dadurch, wie wir meinen, einen Durchbruch für das Verständnis von metallorganischen Katalysatoren erreicht“ sagt Wernet: „Erstmals konnten wir Berechnungen zu Oxidation oder Reduktion, die nicht lokal auf dem Metall, sondern auf dem gesamten Molekül stattfinden, auch im Experiment testen und nachvollziehen.“ Diese Erkenntnisse sind ein wichtiger Grundstein für zukünftigen Arbeiten in der Photosynthese: „Sie werden ein neuartiges Verständnis der Redoxprozesse im Mangan-Katalysator des Photosystem II Proteinkomplexes ermöglichen“, sagt Junko Yano, die intensiv an der Photosynthese forscht.

Published in Chemical Science (2018): Probing the oxidation state of transition metal complexes: a case study on how charge and spin densities determine Mn L-edge X-ray absorption energies; Markus Kubin,  Meiyuan Guo,  Thomas Kroll, Heike Löchel,  Erik Källman,  Michael L. Baker,  Rolf Mitzner,  Sheraz Gul,  Jan Kern,  Alexander Föhlisch, Alexei Erko, Uwe Bergmann,  Vittal Yachandra, Junko Yano,  Marcus Lundberg and  Philippe Wernet;

DOI: 10.1039/C8SC00550H

 

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.