Neuer Weltrekord bei der direkten solaren Wasserspaltung

Aufbau der Photokathode: Licht fällt durch die transparente Schutzschicht mit katalytisch aktiven Rhodium-Partikeln in die Tandemzelle. Bild ACS Energy Letters

Aufbau der Photokathode: Licht fällt durch die transparente Schutzschicht mit katalytisch aktiven Rhodium-Partikeln in die Tandemzelle. Bild ACS Energy Letters

In einem nachhaltigen Energiesystem wird Wasserstoff als Speichermedium eine wichtige Rolle spielen. Einem internationalen Forscher-Team ist es jetzt gelungen, den Wirkungsgrad für die direkte solare Wasserspaltung zur Wasserstoffgewinnung auf 19 Prozent zu steigern. Sie kombinierten dafür eine Tandem-Solarzelle aus III-V-Halbleitern mit Rhodium-Nanopartikeln und kristallinem Titandioxid. An der Forschungsarbeit waren Teams aus dem California Institute of Technology, der University of Cambridge, der TU Ilmenau und dem Fraunhofer Institut für Solare Energiesysteme ISE beteiligt. Ein Teil der Experimente fand am Institut für Solare Brennstoffe am Helmholtz-Zentrum Berlin statt.

Sonnenlicht steht weltweit reichlich zur Verfügung – allerdings nicht rund um die Uhr. Ein Lösungsansatz besteht darin, Sonnenlicht in Form von chemischer Energie zu speichern, konkret: mit Sonnenlicht Wasserstoff zu produzieren. Denn Wasserstoff lässt sich gut speichern und vielseitig nutzen, ob in einer Brennstoffzelle zum Erzeugen von Strom und Wärme oder als Ausgangsbasis für Brennstoffe. Kombiniert man Solarzellen mit Katalysatoren und weiteren funktionalen Schichten zu einer „monolithischen Photoelektrode“ aus einem Block, wird die Aufspaltung von Wasser besonders einfach: dabei befindet sich die Photokathode im wässrigen Medium und wenn Licht auf sie fällt, bildet sich auf der Vorderseite Wasserstoff, auf der Rückseite Sauerstoff.

Lichtdurchlässiger Korrosionsschutz

Für die hier untersuchte monolithische Photokathode haben die Forscher eine am Fraunhofer ISE entwickelte hocheffiziente Tandem-Zelle aus III-V-Halbleitern mit weiteren funktionalen Schichten kombiniert. Dabei gelang es ihnen, die Verluste durch Lichtreflexion und Absorption an der Oberfläche deutlich zu verringern. „Darin besteht auch die Innovation“, erläutert Prof. Hans-Joachim Lewerenz, Caltech, USA: „Denn bereits 2015 konnten wir in einer früheren Zelle einen Wirkungsgrad von über 14 Prozent erreichen, damals ein Weltrekord. Hier haben wir die Antikorrosionsschicht durch eine kristalline Titandioxid-Schicht ersetzt, die nicht nur hervorragende Antireflexionseigenschaften besitzt, sondern an der auch die Katalysator-Teilchen haften bleiben“. Und Prof. Harry Atwater,  Caltech, fügt an: „Außerdem haben wir ein neues elektrochemisches Verfahren genutzt, um die Rhodium-Nanoteilchen herzustellen, die als Katalysatoren für die Wasserspaltung dienen. Sie messen nur 10 Nanometer im Durchmesser und sind damit optisch nahezu transparent, also ideal geeignet für ihre Aufgabe.“

Wirkungsgrad 19,3 Prozent

Unter simulierter Sonneneinstrahlung erzielten die Wissenschaftler einen Wirkungsgrad von 19,3 Prozent (in verdünnterwässriger Perchlorsäure), in (neutralem) Wasser immerhin noch 18,5 Prozent. Dies reicht schon nah an den theoretisch maximalen Wirkungsgrad von 23 Prozent heran, der sich mit dieser Kombination von Schichten aufgrund ihrer elektronischen Eigenschaften erreichen lässt.

Verbesserungen bei der Stabilität

„Die kristalline Titandioxid-Schicht schützt die eigentliche Solarzelle nicht nur vor Korrosion, sondern verbessert durch ihre günstigen elektronischen Eigenschaften auch den Ladungstransport“, sagt Dr. Matthias May, der einen Teil der Experimente zur Effizienzbestimmung am HZB-Institut für Solare Brennstoffe durchgeführt hat, im Vorläuferlabor der Solar Fuel Testing Facility der Helmholtz Energy Materials Foundry (HEMF). Der nun publizierte Rekordwert basiert auf Arbeiten, die May bereits als Doktorand am HZB begonnen hatte und für die er 2016 den Helmholtz-Doktoranden-Preis im Forschungsbereich Energie erhielt. „Die Stabilität konnten wir auf knapp 100 Stunden steigern; das ist ein großer Fortschritt im Vergleich zu Vorgängersystemen, die bereits nach 40 Stunden korrodiert waren. Dennoch bleibt hier noch viel zu tun“, erklärt May.

Ausblick: Tandemzellen mit Silizium

Denn noch ist dies Grundlagenforschung an kleinen, hochpreisigen Systemen im Labor. Aber die Forscher sind optimistisch: „Diese Arbeit zeigt, dass maßgeschneiderte Tandem-Zellen für die direkte solare Wasserspaltung das Potential haben, Wirkungsgrade jenseits von 20 Prozent zu erreichen. Ein Ansatz dafür ist die noch bessere Wahl der Bandlückenenergien der beiden Absorbermaterialien in der Tandem-Zelle. Und eines der beiden könnte dabei sogar Silizium sein“, erklärt Prof. Thomas Hannappel, TU Ilmenau. Teams am Fraunhofer ISE und der TU Ilmenau arbeiten daran, Zellen zu entwerfen, in denen III-V-Halbleiter mit dem preisgünstigem Silizium kombiniert werden, was die Kosten erheblich senken könnte.

Zur Publikation in ACS Energy Letters: "Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency” Wen-Hui Cheng, Matthias H. Richter, Matthias M. May, Jens Ohlmann , David Lackner , Frank Dimroth, Thomas Hannappel , Harry A. Atwater , Hans-Joachim Lewerenz

Doi:10.1021/acsenergylett.8b00920

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    Science Highlight
    23.08.2024
    Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.
  • Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Science Highlight
    31.07.2024
    Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.
  • Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Nachricht
    29.07.2024
    Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Der Plan klingt bestechend: Neuartige Elektrolyseure sollen aus ungereinigtem Meerwasser mit Strom aus Sonne oder Wind direkt Wasserstoff erzeugen. Doch bei näherer Betrachtung zeigt sich, dass solche DSE-Elektrolyseure (DSE = Direct Seawater Electrolyzers) noch Jahre anspruchsvoller Forschung erfordern. Dabei sind neuartige Elektrolyseure gar nicht nötig, um Meerwasser für die Produktion von Wasserstoff zu verwenden – eine Entsalzung reicht aus, um Meerwasser für konventionelle Elektrolyseure aufzubereiten. In einem Kommentar im Fachjournal Joule vergleichen internationale Expert*innen Kosten und Nutzen der unterschiedlichen Ansätze und kommen zu einer klaren Empfehlung.