Experiment an BESSY II zeigt, wie der Kompass in magnetisch empfindlichen Bakterien funktioniert

Die magnetischen Nanoteilchen bilden im Innern der Zelle eine Kette, zeigt die Elektronenkryotomographie.

Die magnetischen Nanoteilchen bilden im Innern der Zelle eine Kette, zeigt die Elektronenkryotomographie. © 10.1039/C7NR08493E

Messungen an BESSY II zeigten, wie sich unter einem äußeren Magnetfeld die Kettenglieder ausrichten.

Messungen an BESSY II zeigten, wie sich unter einem äußeren Magnetfeld die Kettenglieder ausrichten. © 10.1039/C7NR08493E

Bakterien sind ungeheuer vielfältig, nicht nur von Gestalt, sondern auch in ihren Eigenschaften. Magnetotaktische Bakterien können mit Hilfe von magnetischen Nanopartikeln das Erdmagnetfeld „spüren“.  Nun hat eine Kooperation aus spanischen Teams und einer Gruppe am Helmholtz-Zentrum Berlin den inneren Kompass in Magnetospirillum gryphiswaldense an der Synchrotronquelle BESSY II untersucht.  Die Ergebnisse können für die Entwicklung von biomedizinischen Anwendungen wie Nanorobotern und Nanosensoren nützlich sein.

Magnetotaktische Bakterien kommen in Gewässern und marinen Sedimenten vor. Magnetospirillum gryphiswaldense gehört zu den Spezies, die sich besonders einfach im Labor zu züchten lassen, und zwar wahlweise mit oder ohne magnetische Nanopartikel im Inneren der Zelle.  „Diese Mikroorganismen sind ideale Testobjekte, um zu verstehen, wie ihr innerer Kompass sich bildet”, erklärt Lourdes Marcano, Doktorandin an der Universidad del Pais Vasco in Leioa, Spanien.

Kette aus Nanoteilchen

Magnetospirillum-Zellen enthalten eine Anzahl von winzigen Magnetit-Teilchen (Fe3O4) mit Durchmessern um die 45 Nanometer. Diese Nanoteilchen, auch Magnetosome genannt, ordnen sich in der Regel zu einer Kette im Innern des Bakteriums an. Diese Kette aus Magnetosomen wirkt als Kompassnadel und richtet sich nach einem äußeren Magnetfeld aus. Dadurch wird auch das Bakterium entlang des Erdmagnetfelds ausgerichtet. „Diese Bakterien existieren mit Vorliebe zwischen sauerstoffreichen und sauerstoffarmen Schichten” sagt Marcano. „Ihr innerer Kompass könnte ihnen helfen, die optimalen Lebensbedingungen zu finden.”

Die spanischen Kooperationspartner untersuchten zunächst die Form der Magnetosomen und ihre Anordnung im Innern der Zelle mit unterschiedlichen Methoden, darunter auch der Elektronenkryotomographie.

Einzelne magnetische Ketten an BESSY II untersucht

An BESSY II untersuchten sie gemeinsam mit dem HZB-Team um Dr. Sergio Valencia isolierte Ketten aus Magnetosomen. Insbesondere wollten sie ermitteln, wie sich die Kette zum magnetischen Feld ausrichtet, das die magnetischen Nanopartikel selbst erzeugen. „Normalerweise benötigt man hunderte von Proben mit unterschiedlich orientierten Magnetosomen-Ketten, um die magnetischen Eigenschaften dieser Bakterien zu charakterisieren“, sagt HZB-Physiker Dr. Sergio Valencia. „Aber an BESSY II können wir mit Hilfe von Photoelektronen-Emissionsmikroskopie (PEEM) und weiteren Methoden die magnetischen Eigenschaften von einzelnen Ketten präzise vermessen.“ Dies eröffnet die Möglichkeit, die Ergebnisse mit theoretischen Vorhersagen zu vergleichen.

Spiralige Form der Ketten

Tatsächlich zeigten die Experimente etwas Überraschendes: Anders als bisher vermutet ist das Magnetfeld der Magnetosomen nicht parallel zur Kette ausgerichtet, sondern leicht schräg dazu. Die theoretische Modellierung der spanischen Partner deutet darauf hin, dass dieser Neigungswinkel dazu führt, dass die Magnetosomenkette eine spiralige Form hat.

Von der Natur lernen

Es sei sehr wichtig, die Mechanismen zu verstehen, die die Form der Kette beeinflussen, betonen die Wissenschaftler. Solche bewährten Erfindungen der Natur könnten als Vorbild und Inspiration dienen. So ließen sich möglicherweise ähnliche Mechanismen für biomedizinische Anwendungen nutzen - zum Beispiel zur Steuerung von Nanorobotern.

Publikation in Nanoscale (2018): “Configuration of the magnetosome chain: a natural magnetic nanoarchitecture”; I. Orue, L. Marcano, P. Bender, A. Garcıa-Prieto, S. Valencia, M.A. Mawass, D. Gil-Carton, D. Alba Venero, D. Honecker, A. Garcıa-Arribas, L. Fernandez Barquın, A. Muela, M.L. Fdez-Gubieda

DOI: 10.1039/C7NR08493E

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.  

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.