Streitfrage in der Festkörperphysik nach 40 Jahren entschieden

Aus verschiedenen Kristallrichtungen im Inneren der Probe sowie von der Oberfläche werden Elektronen emittiert, die mit ARPES gemessen werden. Links beträgt die Probentemperatur 25 K, rechts nur 1 K. Aus diesen Daten lässt sich die Energieverteilung der Leitungs- und der Valenzbandelektronen ermitteln. Bei sehr tiefen T (1K) bleibt nur die Oberfläche leitend.

Aus verschiedenen Kristallrichtungen im Inneren der Probe sowie von der Oberfläche werden Elektronen emittiert, die mit ARPES gemessen werden. Links beträgt die Probentemperatur 25 K, rechts nur 1 K. Aus diesen Daten lässt sich die Energieverteilung der Leitungs- und der Valenzbandelektronen ermitteln. Bei sehr tiefen T (1K) bleibt nur die Oberfläche leitend. © HZB

Ein internationales Team um Prof. Oliver Rader hat an BESSY II gezeigt, dass  Samariumhexaborid kein topologischer Isolator ist. Durch einen Quanteneffekt wird dieses metallische Material bei sehr tiefen Temperaturen zu einem Kondo-Isolator, zeigt aber dennoch eine Restleitfähigkeit. Theoretische und erste experimentelle Arbeiten hatten zuvor darauf hingedeutet, dass dies auf einen topologischer Isolator schließen lässt. Das Team hat nun in Nature Communications eine überzeugende alternative Erklärung vorgestellt.

Samariumhexaborid (SmB6) ist ein dunkler Feststoff, der bei Raumtemperatur metallisch ist. Dabei gehört Samarium zu den Lanthaniden, einer Gruppe von Elementen mit mehreren Elektronen, die auf lokalisierten, sogenannten f-Orbitalen sitzen, und stark miteinander wechselwirken. Je tiefer die Temperaturen sinken, desto stärker zeigen sich diese Wechselwirkungen. Unterhalb der sogenannten Kondo-Temperatur wird SmB6 zu einem so genannten Kondo-Isolator, benannt nach Jun Kondo, der als erster diesen Quanteneffekt erklären konnte.

Nahe dem absoluten Nullpunkt: Restleitfähigkeit trotz Kondo-Effekt

Nun haben vor etwa 40 Jahren Physiker beobachtet, dass SmB6 bei tiefen Temperaturen unter 4 Kelvin noch eine Restleitfähigkeit behält, deren Ursache bis heute ungeklärt blieb. Nach der Entdeckung der Materialklasse der topologischen Isolatoren vor rund zwölf Jahren wurden Hypothesen laut, dass SmB6 sowohl ein Kondo-Isolator als auch ein topologischer Isolator sein könnte - dies würde die Anomalie in der Leitfähigkeit sehr grundlegend erklären. Tatsächlich deuteten erste Experimente darauf hin.

Nun an BESSY II: Präzise Vermessung der Energiebänder

Nun konnte ein internationales Team um Prof. Oliver Rader besonders gute Proben von SmB6 an BESSY II detailliert untersuchen. Die Proben von Kooperationspartnern aus der Ukraine wurden entlang bestimmter Kristallebenen gespalten und mit Hilfe der weltweit einmaligen höchstauflösenden Apparatur für Photoemissionsspektroskopie ARPES 13 an BESSY II untersucht. Dabei konnten die Physiker die nötigen niedrigen Temperaturen bis hinunter zu 1 Kelvin erreichen und die Energieniveaus der unterschiedlichen Elektronenbänder bezogen auf die Geometrie des Kristalls sehr genau vermessen. 

Analyse der Messdaten zeigt: Kein topologischer Isolator

Ihre Messungen bestätigten zwar den Befund von beweglichen Elektronen an der Oberfläche. Sie belegten aber gleichzeitig, dass sich die Elektronen aufgrund der beobachteten geraden Zahl von Bandüberkreuzungen nicht in topologischen Oberflächenzuständen befinden.

Sondern: Lokale Verschiebung der Bandlücken erklärt Restleitfähigkeit

In den folgenden Experimenten suchten die Forscher intensiv nach einer alternativen Erklärung für die Leitfähigkeit, die inzwischen tatsächlich an der Oberfläche nachgewiesen worden war. „Wir konnten zeigen, dass sich die Lücke zwischen den erlaubten Energieniveaus der Elektronen, die sich durch den Kondo-Effekt auftut, an der Oberfläche ein klein wenig verschoben wird. Deshalb kann die Probe genau dort leitfähig sein. Damit ist aber auch klar, dass die besondere Oberflächenleitfähigkeit nicht von topologischen Eigenschaften verursacht wird“, erklärt Dr. Emile Rienks, der die Experimente zusammen mit dem Doktoranden Peter Hlawenka (HZB und Universität Potsdam) durchgeführt hat.

Ausblick: Grüne Spintronik/Energieffiziente IT

Die Forschung an Topologischen Isolatoren und anderen Materialien, die starke quantenphysikalische Effekte zeigen, könnte zu neuen Bauelementen für eine energieeffiziente Informationstechnologie führen. Informationen könnten mit minimalem Energieeinsatz verarbeitet und gespeichert werden, wenn man die Physik dieser Materialien noch besser verstehen und damit auch kontrollieren kann.

Zur Publikation in Nature Communication (2018): Samarium hexaboride is a trivial surface conductor, P. Hlawenka, K. Siemensmeyer, E. Weschke, A. Varykhalov, J. Sánchez-Barriga, N.Y. Shitsevalova, A.V. Dukhnenko, V.B. Filipov, S. Gabáni, K. Flachbart, O. Rader & E.D.L. Rienks

DOI: 10.1038/s41467-018-02908-7

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB schafft erneut Weltrekord bei CIGS-Pero-Tandemsolarzellen
    Nachricht
    04.02.2025
    HZB schafft erneut Weltrekord bei CIGS-Pero-Tandemsolarzellen
    Durch die Kombination von zwei Halbleiterdünnschichten zu einer Tandemsolarzelle sind hohe Wirkungsgrade bei minimalem ökologischem Fußabdruck erreichbar. Teams aus dem HZB und der Humboldt-Universität zu Berlin haben nun eine Tandemzelle aus CIGS und Perowskit vorgestellt, die mit einem Wirkungsgrad von 24,6 % den neuen Weltrekord hält. Dieser Wert wurde durch das Fraunhofer-Institut für Solare Energiesysteme ISE zertifiziert.
  • Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Science Highlight
    20.01.2025
    Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.