Streitfrage in der Festkörperphysik nach 40 Jahren entschieden

Aus verschiedenen Kristallrichtungen im Inneren der Probe sowie von der Oberfläche werden Elektronen emittiert, die mit ARPES gemessen werden. Links beträgt die Probentemperatur 25 K, rechts nur 1 K. Aus diesen Daten lässt sich die Energieverteilung der Leitungs- und der Valenzbandelektronen ermitteln. Bei sehr tiefen T (1K) bleibt nur die Oberfläche leitend.

Aus verschiedenen Kristallrichtungen im Inneren der Probe sowie von der Oberfläche werden Elektronen emittiert, die mit ARPES gemessen werden. Links beträgt die Probentemperatur 25 K, rechts nur 1 K. Aus diesen Daten lässt sich die Energieverteilung der Leitungs- und der Valenzbandelektronen ermitteln. Bei sehr tiefen T (1K) bleibt nur die Oberfläche leitend. © HZB

Ein internationales Team um Prof. Oliver Rader hat an BESSY II gezeigt, dass  Samariumhexaborid kein topologischer Isolator ist. Durch einen Quanteneffekt wird dieses metallische Material bei sehr tiefen Temperaturen zu einem Kondo-Isolator, zeigt aber dennoch eine Restleitfähigkeit. Theoretische und erste experimentelle Arbeiten hatten zuvor darauf hingedeutet, dass dies auf einen topologischer Isolator schließen lässt. Das Team hat nun in Nature Communications eine überzeugende alternative Erklärung vorgestellt.

Samariumhexaborid (SmB6) ist ein dunkler Feststoff, der bei Raumtemperatur metallisch ist. Dabei gehört Samarium zu den Lanthaniden, einer Gruppe von Elementen mit mehreren Elektronen, die auf lokalisierten, sogenannten f-Orbitalen sitzen, und stark miteinander wechselwirken. Je tiefer die Temperaturen sinken, desto stärker zeigen sich diese Wechselwirkungen. Unterhalb der sogenannten Kondo-Temperatur wird SmB6 zu einem so genannten Kondo-Isolator, benannt nach Jun Kondo, der als erster diesen Quanteneffekt erklären konnte.

Nahe dem absoluten Nullpunkt: Restleitfähigkeit trotz Kondo-Effekt

Nun haben vor etwa 40 Jahren Physiker beobachtet, dass SmB6 bei tiefen Temperaturen unter 4 Kelvin noch eine Restleitfähigkeit behält, deren Ursache bis heute ungeklärt blieb. Nach der Entdeckung der Materialklasse der topologischen Isolatoren vor rund zwölf Jahren wurden Hypothesen laut, dass SmB6 sowohl ein Kondo-Isolator als auch ein topologischer Isolator sein könnte - dies würde die Anomalie in der Leitfähigkeit sehr grundlegend erklären. Tatsächlich deuteten erste Experimente darauf hin.

Nun an BESSY II: Präzise Vermessung der Energiebänder

Nun konnte ein internationales Team um Prof. Oliver Rader besonders gute Proben von SmB6 an BESSY II detailliert untersuchen. Die Proben von Kooperationspartnern aus der Ukraine wurden entlang bestimmter Kristallebenen gespalten und mit Hilfe der weltweit einmaligen höchstauflösenden Apparatur für Photoemissionsspektroskopie ARPES 13 an BESSY II untersucht. Dabei konnten die Physiker die nötigen niedrigen Temperaturen bis hinunter zu 1 Kelvin erreichen und die Energieniveaus der unterschiedlichen Elektronenbänder bezogen auf die Geometrie des Kristalls sehr genau vermessen. 

Analyse der Messdaten zeigt: Kein topologischer Isolator

Ihre Messungen bestätigten zwar den Befund von beweglichen Elektronen an der Oberfläche. Sie belegten aber gleichzeitig, dass sich die Elektronen aufgrund der beobachteten geraden Zahl von Bandüberkreuzungen nicht in topologischen Oberflächenzuständen befinden.

Sondern: Lokale Verschiebung der Bandlücken erklärt Restleitfähigkeit

In den folgenden Experimenten suchten die Forscher intensiv nach einer alternativen Erklärung für die Leitfähigkeit, die inzwischen tatsächlich an der Oberfläche nachgewiesen worden war. „Wir konnten zeigen, dass sich die Lücke zwischen den erlaubten Energieniveaus der Elektronen, die sich durch den Kondo-Effekt auftut, an der Oberfläche ein klein wenig verschoben wird. Deshalb kann die Probe genau dort leitfähig sein. Damit ist aber auch klar, dass die besondere Oberflächenleitfähigkeit nicht von topologischen Eigenschaften verursacht wird“, erklärt Dr. Emile Rienks, der die Experimente zusammen mit dem Doktoranden Peter Hlawenka (HZB und Universität Potsdam) durchgeführt hat.

Ausblick: Grüne Spintronik/Energieffiziente IT

Die Forschung an Topologischen Isolatoren und anderen Materialien, die starke quantenphysikalische Effekte zeigen, könnte zu neuen Bauelementen für eine energieeffiziente Informationstechnologie führen. Informationen könnten mit minimalem Energieeinsatz verarbeitet und gespeichert werden, wenn man die Physik dieser Materialien noch besser verstehen und damit auch kontrollieren kann.

Zur Publikation in Nature Communication (2018): Samarium hexaboride is a trivial surface conductor, P. Hlawenka, K. Siemensmeyer, E. Weschke, A. Varykhalov, J. Sánchez-Barriga, N.Y. Shitsevalova, A.V. Dukhnenko, V.B. Filipov, S. Gabáni, K. Flachbart, O. Rader & E.D.L. Rienks

DOI: 10.1038/s41467-018-02908-7

arö

Das könnte Sie auch interessieren

  • Shutdown bei BESSY II: Neue Versorgungstechnik sichert langfristig den Betrieb
    Nachricht
    20.05.2022
    Shutdown bei BESSY II: Neue Versorgungstechnik sichert langfristig den Betrieb
    Die Röntgenquelle BESSY II befindet sich in einem dreimonatigen Shutdown. In dieser Zeit wird die Niederspannungshauptverteilung im Versorgungsgebäude außerhalb des Elektronenspeicherrings erneuert. Dies sichert den langfristigen stabilen Betrieb von BESSY II über das nächste Jahrzehnt hinaus.

  • Wärmedämmung für Quantentechnologien
    Science Highlight
    19.05.2022
    Wärmedämmung für Quantentechnologien
    Neue energieeffiziente IT-Bauelemente arbeiten häufig nur bei extrem tiefen Temperaturen stabil. Daher kommt es entscheidend auf eine sehr gute Wärmeisolierung solcher Elemente an, was die Entwicklung von Materialien mit extrem niedriger Wärmeleitfähigkeit erfordert. Ein Team am HZB hat nun mit einem neuartigen Sinterverfahren nanoporöse Silizium-Aluminium-Proben hergestellt, in welchen Poren und Nanokristallite den Transport von Wärme behindern und so die Wärmeleitfähigkeit drastisch reduzieren. Die Forschenden haben ein Modell für die Vorhersage der Wärmeleitfähigkeit entwickelt, das anhand von Messdaten zur Mikrostruktur der Proben und deren Wärmeleitfähigkeit bestätigt wurde. Damit liegt erstmals eine Methode für die gezielte Entwicklung von komplexen porösen Materialien mit ultraniedriger Wärmeleitfähigkeit vor.
  • Magnetische Nanopartikel in biologischen Trägern einzeln charakterisiert
    Science Highlight
    17.05.2022
    Magnetische Nanopartikel in biologischen Trägern einzeln charakterisiert
    Magnetische Nanostrukturen sind vielversprechende Werkzeuge für medizinische Anwendungen. Eingebaut in biologische Vehikel, lassen sich diese dann durch externe Magnetfelder an ihren Einsatzort im Körper steuern, wo sie Medikamente freisetzen oder Krebszellen zerstören können. Dazu ist jedoch die genaue Kenntnis der magnetischen Eigenschaften solcher Nanoteilchen nötig. Bisher konnten solche Informationen nur gemittelt über tausende Nanopartikel gewonnen werden. Nun hat ein Team am HZB eine Methode entwickelt, um die charakteristischen Parameter jedes einzelnen magnetischen Nanopartikels zu bestimmen.