Nutzerexperiment an BESSY II: Komplexe Parkettmuster, außergewöhnliche Materialien

Der neue Baustein (links, roter Umriss) besteht aus zwei konvertierten Ausgangsmolekülen, die durch ein Silber-Atom (blau) verbunden sind. Dadurch entstehen komplexe, halbreguläre „Parkettmuster“ (rechts, Mikroskopbild).

Der neue Baustein (links, roter Umriss) besteht aus zwei konvertierten Ausgangsmolekülen, die durch ein Silber-Atom (blau) verbunden sind. Dadurch entstehen komplexe, halbreguläre „Parkettmuster“ (rechts, Mikroskopbild). © Klappenberger und Zhang / TUM

Einfache organische Moleküle bilden komplexe Materialien durch Selbstorganisation

Ein internationales Forscherteam unter Führung der Technischen Universität München (TUM) hat einen Reaktionsweg entdeckt, der aus einfachen zweidimensionalen Netzwerken exotische Schichten mit halbregulärer Struktur erzeugt. Solche Materialien sind interessant, weil sie häufig außerordentliche  Eigenschaften besitzen. Bei dem in Nature Chemistry publizierten Verfahren wird der ursprüngliche organische Molekül-Baustein zu einem größeren, komplexeren Baustein gekoppelt. Messungen an BESSY II zeigen, welche chemischen Prozesse dies ermöglichen. 

Um eine Fläche mit gleichförmigen Kacheln lückenlos zu pflastern, kommen nur wenige geometrische Grundformen in Frage: Dreiecke, Vierecke und Sechsecke. Mit zwei oder mehr Kachelformen lassen sich wesentlich mehr und deutlich komplexere Muster erzeugen, die immer noch regelmäßig sind, die sogenannten Archimedischen Parkettierungen.

Auch Materialien können eine solche Parkettierung aufweisen. Diese Strukturen sind häufig mit ganz besonderen Eigenschaften verbunden, zum Beispiel mit außergewöhnlicher elektrischer Leitfähigkeit, spezieller Lichtreflektion oder extremer mechanischer Belastbarkeit. Doch es ist schwierig, solche Strukturen gezielt zu erzeugen. Dafür sind große molekulare Bausteine nötig, die nicht mit den konventionellen Herstellungsprozessen kompatibel sind.

Komplexes Parkettmuster durch Selbstorganisation

Bei einer Klasse supramolekularer Netzwerke ist nun einem internationalen Team um die Professoren Florian Klappenberger und Johannes Barth vom Lehrstuhl für Experimentalphysik an der TUM sowie Prof. Mario Ruben vom Karlsruher Institut für Technologie ein Durchbruch gelungen: Sie brachten organische Moleküle dazu, sich zu größeren Bausteinen zu verbinden, die selbstorganisiert ein komplexes Parkettmuster bilden.

Als Ausgangsverbindung nutzten sie Ethynyl-Iodophenanthren, ein handliches organisches Molekül aus drei aneinandergekoppelten Kohlenstoffringen, das ein Iod- und ein Alkin-Ende besitzt. Auf einem Silbersubstrat bildet dieses Molekül zunächst ein regelmäßiges Netz mit großen sechseckigen Maschen. 

Eine Wärmebehandlung setzt dann eine Abfolge chemischer Prozesse in Gang, die einen neuartigen, deutlich größeren Baustein erzeugen, der dann quasi automatisch und selbstorganisiert eine komplexe Schicht mit kleinen sechs-, vier- und dreieckigen Poren bildet. Dieses Muster wird in der Sprache der Geometrie als semireguläre 3.4.6.4 Parkettierung bezeichnet.

 Einfache organische Bausteine bilden komplexe Materialien

„Unsere an der TUM durchgeführten Rastertunnelmikroskopie-Messungen zeigen deutlich, dass am Molekülumbau viele Reaktionen beteiligt sind, was normalerweise zu zahlreichen Abfallprodukten führt. Hier jedoch werden alle Abfallprodukte wiederverwendet, so dass der Gesamtprozess zuverlässig zum gewünschten Endprodukt führt“, erklärt Prof. Florian Klappenberger.

Experimente an BESSY II

Wie es dazu kommt, fanden die Forscher durch weitere Experimente heraus. „Mit Hilfe röntgenspektroskopischer Messungen am Elektronenspeicherring BESSY II des Helmholtz-Zentrums Berlin konnten wir entschlüsseln, wie sich Iod vom Ausgangsstoff abspaltet, Wasserstoffatome zu neuen Plätzen wandern und die Alkin-Gruppen ein Silber-Atom einfangen“, berichtet Erstautor Yi-Qi Zhang.

Mit Hilfe des Silber-Atoms binden sich in der Folge zwei Ausgangsbausteine zu einem neuen, größeren Baustein aneinander. Die neuen Bausteine bilden anschließend die beobachtete komplexe Porenstruktur.

„Wir haben einen völlig neuen Weg entdeckt, um komplexe Materialien aus einfachen organischen Bausteinen herzustellen“, fasst Klappenberger zusammen. „Das ist wichtig, um Materialien mit neuen und extremen Eigenschaften gezielt synthetisieren zu können. Außerdem tragen diese Ergebnisse dazu bei, ein spontanes Auftauchen (Emergenz) von Komplexität in chemischen und biologischen Systemen besser zu verstehen.“

Publikation in Nature Chemistry (2018): Complex supramolecular interfacial tessellation through convergent multistep reaction of a dissymmetric simple organic precursor, Yi-Qi Zhang, Mateusz Paszkiewicz, Ping Du, Liding Zhang, Tao Lin, Zhi Chen, Svetlana Klyatskaya, Mario Ruben, Ari P. Seitsonen, Johannes V. Barth, and Florian Klappenberger: Complex supramolecular interfacial tessellation through convergent multistep reaction of a dissymmetric simple organic precursor, Nature Chemistry 2017.

DOI:10.1038/nchem.2924

 

 

 

arö/TUM

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.  

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.