Nutzerexperiment an BESSY II: Komplexe Parkettmuster, außergewöhnliche Materialien

Der neue Baustein (links, roter Umriss) besteht aus zwei konvertierten Ausgangsmolekülen, die durch ein Silber-Atom (blau) verbunden sind. Dadurch entstehen komplexe, halbreguläre „Parkettmuster“ (rechts, Mikroskopbild).

Der neue Baustein (links, roter Umriss) besteht aus zwei konvertierten Ausgangsmolekülen, die durch ein Silber-Atom (blau) verbunden sind. Dadurch entstehen komplexe, halbreguläre „Parkettmuster“ (rechts, Mikroskopbild). © Klappenberger und Zhang / TUM

Einfache organische Moleküle bilden komplexe Materialien durch Selbstorganisation

Ein internationales Forscherteam unter Führung der Technischen Universität München (TUM) hat einen Reaktionsweg entdeckt, der aus einfachen zweidimensionalen Netzwerken exotische Schichten mit halbregulärer Struktur erzeugt. Solche Materialien sind interessant, weil sie häufig außerordentliche  Eigenschaften besitzen. Bei dem in Nature Chemistry publizierten Verfahren wird der ursprüngliche organische Molekül-Baustein zu einem größeren, komplexeren Baustein gekoppelt. Messungen an BESSY II zeigen, welche chemischen Prozesse dies ermöglichen. 

Um eine Fläche mit gleichförmigen Kacheln lückenlos zu pflastern, kommen nur wenige geometrische Grundformen in Frage: Dreiecke, Vierecke und Sechsecke. Mit zwei oder mehr Kachelformen lassen sich wesentlich mehr und deutlich komplexere Muster erzeugen, die immer noch regelmäßig sind, die sogenannten Archimedischen Parkettierungen.

Auch Materialien können eine solche Parkettierung aufweisen. Diese Strukturen sind häufig mit ganz besonderen Eigenschaften verbunden, zum Beispiel mit außergewöhnlicher elektrischer Leitfähigkeit, spezieller Lichtreflektion oder extremer mechanischer Belastbarkeit. Doch es ist schwierig, solche Strukturen gezielt zu erzeugen. Dafür sind große molekulare Bausteine nötig, die nicht mit den konventionellen Herstellungsprozessen kompatibel sind.

Komplexes Parkettmuster durch Selbstorganisation

Bei einer Klasse supramolekularer Netzwerke ist nun einem internationalen Team um die Professoren Florian Klappenberger und Johannes Barth vom Lehrstuhl für Experimentalphysik an der TUM sowie Prof. Mario Ruben vom Karlsruher Institut für Technologie ein Durchbruch gelungen: Sie brachten organische Moleküle dazu, sich zu größeren Bausteinen zu verbinden, die selbstorganisiert ein komplexes Parkettmuster bilden.

Als Ausgangsverbindung nutzten sie Ethynyl-Iodophenanthren, ein handliches organisches Molekül aus drei aneinandergekoppelten Kohlenstoffringen, das ein Iod- und ein Alkin-Ende besitzt. Auf einem Silbersubstrat bildet dieses Molekül zunächst ein regelmäßiges Netz mit großen sechseckigen Maschen. 

Eine Wärmebehandlung setzt dann eine Abfolge chemischer Prozesse in Gang, die einen neuartigen, deutlich größeren Baustein erzeugen, der dann quasi automatisch und selbstorganisiert eine komplexe Schicht mit kleinen sechs-, vier- und dreieckigen Poren bildet. Dieses Muster wird in der Sprache der Geometrie als semireguläre 3.4.6.4 Parkettierung bezeichnet.

 Einfache organische Bausteine bilden komplexe Materialien

„Unsere an der TUM durchgeführten Rastertunnelmikroskopie-Messungen zeigen deutlich, dass am Molekülumbau viele Reaktionen beteiligt sind, was normalerweise zu zahlreichen Abfallprodukten führt. Hier jedoch werden alle Abfallprodukte wiederverwendet, so dass der Gesamtprozess zuverlässig zum gewünschten Endprodukt führt“, erklärt Prof. Florian Klappenberger.

Experimente an BESSY II

Wie es dazu kommt, fanden die Forscher durch weitere Experimente heraus. „Mit Hilfe röntgenspektroskopischer Messungen am Elektronenspeicherring BESSY II des Helmholtz-Zentrums Berlin konnten wir entschlüsseln, wie sich Iod vom Ausgangsstoff abspaltet, Wasserstoffatome zu neuen Plätzen wandern und die Alkin-Gruppen ein Silber-Atom einfangen“, berichtet Erstautor Yi-Qi Zhang.

Mit Hilfe des Silber-Atoms binden sich in der Folge zwei Ausgangsbausteine zu einem neuen, größeren Baustein aneinander. Die neuen Bausteine bilden anschließend die beobachtete komplexe Porenstruktur.

„Wir haben einen völlig neuen Weg entdeckt, um komplexe Materialien aus einfachen organischen Bausteinen herzustellen“, fasst Klappenberger zusammen. „Das ist wichtig, um Materialien mit neuen und extremen Eigenschaften gezielt synthetisieren zu können. Außerdem tragen diese Ergebnisse dazu bei, ein spontanes Auftauchen (Emergenz) von Komplexität in chemischen und biologischen Systemen besser zu verstehen.“

Publikation in Nature Chemistry (2018): Complex supramolecular interfacial tessellation through convergent multistep reaction of a dissymmetric simple organic precursor, Yi-Qi Zhang, Mateusz Paszkiewicz, Ping Du, Liding Zhang, Tao Lin, Zhi Chen, Svetlana Klyatskaya, Mario Ruben, Ari P. Seitsonen, Johannes V. Barth, and Florian Klappenberger: Complex supramolecular interfacial tessellation through convergent multistep reaction of a dissymmetric simple organic precursor, Nature Chemistry 2017.

DOI:10.1038/nchem.2924

 

 

 

arö/TUM

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.