Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten

Rasterelektronenmikroskopien der Perowskit-Solarzellen, links mit glatter, rechts mit mesopor&ouml;ser Grenzschicht. Zur Verdeutlichung wurden die Bilder halbseitig eingef&auml;rbt: Metalloxid (t&uuml;rkis), Grenzschicht (rot), Perowskit (braun), lochleitende Schicht (dunkelblau) sowie Goldkontakt. Die Skala zeigt 200 nm. </p>
<p>

Rasterelektronenmikroskopien der Perowskit-Solarzellen, links mit glatter, rechts mit mesoporöser Grenzschicht. Zur Verdeutlichung wurden die Bilder halbseitig eingefärbt: Metalloxid (türkis), Grenzschicht (rot), Perowskit (braun), lochleitende Schicht (dunkelblau) sowie Goldkontakt. Die Skala zeigt 200 nm.

© A. Gagliardi/TUM

Für die Stabilität des Wirkungsgrads von Perowskit-Solarzellen spielt ihre innere Architektur eine entscheidende Rolle. Dies zeigten nun zwei Forscherteams von Helmholtz-Zentrum Berlin und der TU München. Sie kombinierten dafür ihre Experimente mit numerischen Simulationen.

In nur wenigen Jahren hat sich der Wirkungsgrad von Perowskit-Solarzellen von knapp drei auf über 20 Prozent steigern lassen. Dazu kommt, dass dieses Material preisgünstig ist und einfach verarbeitet werden kann. Deshalb gelten Perowskit-Dünnschichten als vielversprechender Kandidat für den weiteren Ausbau der Photovoltaik. Leider gibt es bislang noch einige Haken: So bleibt der Wirkungsgrad von Perowskit-Solarzellen unter  UV-Strahlung im Freien oder elektrischen Feldern, die beim Betrieb auftreten, nicht lange stabil. Nun haben Dr. Antonio Abate, Leiter einer Helmholtz-Nachwuchsgruppe am HZB, und Prof. Alessio Gagliardi, TU München, gezeigt, welchen Einfluss der Aufbau von Perowskit-Zellen auf die Stabilität des Wirkungsgrads hat. Ihre Ergebnisse sind im Fachjournal ACS Energy Letters publiziert.

Die Wissenschaftler untersuchten zwei unterschiedliche Architekturen von Perowskit-Solarzellen, die ansonsten auf identische Weise präpariert wurden. In beiden grenzt die Perowskit-Dünnschicht an eine elektronenleitende Schicht aus einem Metalloxid wie Titandioxid oder Zinndioxid. Während in der ersten Variante die beiden Schichten glatt aneinandergrenzen (planare Grenzschicht), bildet sich in der zweiten Variante eine mesoporöse Zwischenschicht aus Perowskit und Metalloxid aus, die eine komplexe, schwammartige Struktur mit vielen winzigen Poren besitzt. Überraschenderweise blieb der Wirkungsgrad von Zellen mit dieser mesoporösen Zwischenschicht weitaus länger stabil als in Zellen mit einer planaren Zwischenschicht.

Durch weitere Experimente und mit Hilfe numerischer Simulationen konnten die Forscher nun eine Begründung für diesen Effekt finden: „Die mesoporöse Zwischenschicht besitzt eine sehr große innere Oberfläche und das erweist sich als Vorteil“, erklärt Abate, der im Rahmen des Helmholtz Innovation Labs HySPRINT arbeitet. Denn dadurch verteilen sich etwaige Fehlstellen und Defekte, die den Wirkungsgrad mindern und sich während des Betriebs der Solarzelle anhäufen, sehr großflächig. Ihr Einfluss wird damit „verdünnt” und abgemildert, so dass der Wirkungsgrad stabil bleibt.

Die Wissenschaftler konnten sogar einen Schwellenwert für die Defektdichte bei den mesoporösen Perowskit-Zellen ermitteln. Oberhalb dieser Schwelle nimmt die Degradation der Zelle sehr rasch zu, ihre Stabilität sinkt rapide. Doch unterhalb der Schwelle bleibt der Wirkungsgrad der Zelle stabil. „Wir konnten zeigen, dass Perowskit-Zellen in einer mesoporösen  Architektur weitaus besser gegen den Einfluss von Defekten geschützt sind”, sagt Abate.

Die Studie ist publiziert in ACS Energy Lett., (2018): Mesoporous Electron-Selective Contacts Enhance the Tolerance to Interfacial Ion Accumulation in Perovskite Solar Cells, A. Abate & A. Gagliardi

DOI: 10.1021/acsenergylett.7b01101

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Nachricht
    26.03.2025
    Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Samira Jama Aden, Architektin in der Beratungstelle für bauwerkintegrierte Photovoltaik (BAIP), ist der Arbeitsgruppe “Environmental, Social and Governance (ESG)” der ETIP PV - The European Technology & Innovation Platform for Photovoltaics beigetreten.
  • Die Zukunft der Energie: Empfehlungen der Wissenschaft an die Politik
    Nachricht
    21.03.2025
    Die Zukunft der Energie: Empfehlungen der Wissenschaft an die Politik
    Expert*innen des HZB haben ihr Fachwissen in den hier kurz vorgestellten Positionspapieren eingebracht.
    Zu den Themen gehören die Entwicklung innovativer Materialien für eine nachhaltige Energieversorgung und die Kreislaufwirtschaft.
    Fachleute aus verschiedenen Bereichen haben gemeinsam Lösungen und Handlungsempfehlungen formuliert.