Miniaturisiertes Spektrometer gewinnt ersten Preis auf internationaler Fachtagung

Für konventionelle Elektronenspinresonanz-Spektrometer braucht man viel Platz, das "ESR on a Chip" passt hingegen in eine 10 Zentimeter große Box. Bild. J.Anders

Für konventionelle Elektronenspinresonanz-Spektrometer braucht man viel Platz, das "ESR on a Chip" passt hingegen in eine 10 Zentimeter große Box. Bild. J.Anders © J. Anders

Ein HZB-Team hat gemeinsam mit Experten der Universitäten Ulm und Stuttgart ein Elektronenspinresonanz-Spektrometer konstruiert, das in eine Box von zehn Zentimetern Kantenlänge passt. Das Team präsentierte das Gerät vor einer Fachjury auf der internationalen Fachtagung IEEE Sensors 2017 in Glasgow, Schottland, und erhielt den ersten Preis im Live-Demonstrationswettbewerb. Die ESR-Spektroskopie ist für die Erforschung von Energiematerialien wie Katalysatoren, Solarzellen und Batterieelektroden sehr nützlich.

Die Elektronenspinresonanz-Spektroskopie (ESR) ist eine fantastische Methode, um Materialien auf Herz und Nieren zu untersuchen. Sie liefert Informationen über chemische und physikalische Eigenschaften, indem sie die winzigen Elementarmagnete (Spins) von ungepaarten Elektronen, wie sie z.B. in chemischen Radikalen oder Defekten in Halbleitern vorliegen, anregt und abtastet. Dadurch lässt sich zum Beispiel im Blut oder auf der Haut die Konzentration von „freien Radikalen“ ermitteln, welche Krankheiten auslösen oder die Zellalterung beschleunigen können. Die ESR-Spektroskopie wird jedoch nicht nur in der Biophysik und medizinischen Diagnostik eingesetzt, sondern bringt auch die Forschung an Energiematerialien wie Katalysatoren, Batterieelektroden und Solarzellen voran.

Konventionelle ESR-Spektrometer: Ein Raum für das Gerät

Allerdings sind ESR-Spektrometer üblicherweise große und teure Geräte, die Platz benötigen und im Betrieb viel Energie verbrauchen. Denn konventionelle ESR-Spektrometer arbeiten mit einem großen Elektromagneten. Zur Messung wird die Probe im Innern des Geräts platziert und mit Mikrowellen einer festen Frequenz angeregt und das angelegte Magnetfeld wird langsam variiert. Bei ganz bestimmten Magnetfeldstärken absorbiert die Probe die Mikrowellenstrahlung,  woraus sich die Konzentration angeregter Moleküle sowie ihre energetischen Zustände in der Probe sehr genau ermitteln lassen.

ESR on a Chip: Zentimetergroß

Nun hat ein Team aus dem HZB gemeinsam mit Experten der Universität Ulm und Stuttgart ein winziges ESR-Spektrometer konstruiert, das in eine Box von zehn Zentimetern Kantenlänge passt. Nach einer erfolgreichen Live-Demonstration vor einer Fachjury auf der großen internationalen Fachtagung IEEE Sensors 2017 in Glasgow, Schottland, erhielt das Team für sein sensationelles Gerät den ersten Preis im Live-Demo-Wettbewerb: Das entwickelte Spektrometer ist nämlich nicht nur winzig, sondern besteht neben dem speziell entwickelten, preisgünstigen Detektionschip aus ebenfalls sehr preisgünstigen Standard-Komponenten und kommt als Energiequelle mit einer kleinen Batterie aus.

Anstelle des sperrigen großen Elektromagneten erzeugt ein kleiner Dauermagnet von der Größe eines Hamburgers ein konstantes Feld von 0,5 Tesla. Dafür lässt sich die Frequenz der Mikrowellenstrahlung durchstimmen: Dies wird durch den speziell entwickelten, nur Quadratmillimeter  großen Mikrochip erreicht, welcher gleichzeitig als ESR-Detektor fungiert. Diesen „ESR-on-a-Chip“-Detektor sowie die zugehörige Elektronik hat Prof. Dr. Jens Anders an der Universität Ulm entworfen. Nach seinem Ruf auf eine W3-Professur an die Universität Stuttgart arbeiten Prof. Anders und sein Team an weiteren Verbesserungen, um die ESR-Technologie in Zukunft einem breiten Anwenderkreis verfügbar machen zu können.

„Während man bei konventionellen ESR-Spektrometern die Probe ins Gerät setzt, könnte man mit dieser Neuerung den Mikrochip sogar in die Probe hineinplatzieren, beispielsweise um Tumorzellen im Körper zu untersuchen“, erläutert Prof. Dr. Klaus Lips, der am Berliner EPR-Labor am HZB das Gerät mitentwickelt hat. 

„Dass wir mit unserem ESR-on-a-Chip den ersten Preis bei der Demosession auf der IEEE Sensors 2017 gewonnen haben, freut uns enorm, zumal das HZB dazu alle relevanten Patente für eine zukünftige Anwendung hat“, sagt Lips. „Schon jetzt haben wir Angebote von führenden Herstellern, die an Lizenzen interessiert sind.“

Live Demonstration: A VCO-based point-of-care ESR spectrometer, B. Schlecker, A. Chu, J. Handwerker, S. Künstner, M. Ortmanns, K. Lips und J. Anders.

(arö)

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.