Miniaturisiertes Spektrometer gewinnt ersten Preis auf internationaler Fachtagung

Für konventionelle Elektronenspinresonanz-Spektrometer braucht man viel Platz, das "ESR on a Chip" passt hingegen in eine 10 Zentimeter große Box. Bild. J.Anders

Für konventionelle Elektronenspinresonanz-Spektrometer braucht man viel Platz, das "ESR on a Chip" passt hingegen in eine 10 Zentimeter große Box. Bild. J.Anders © J. Anders

Ein HZB-Team hat gemeinsam mit Experten der Universitäten Ulm und Stuttgart ein Elektronenspinresonanz-Spektrometer konstruiert, das in eine Box von zehn Zentimetern Kantenlänge passt. Das Team präsentierte das Gerät vor einer Fachjury auf der internationalen Fachtagung IEEE Sensors 2017 in Glasgow, Schottland, und erhielt den ersten Preis im Live-Demonstrationswettbewerb. Die ESR-Spektroskopie ist für die Erforschung von Energiematerialien wie Katalysatoren, Solarzellen und Batterieelektroden sehr nützlich.

Die Elektronenspinresonanz-Spektroskopie (ESR) ist eine fantastische Methode, um Materialien auf Herz und Nieren zu untersuchen. Sie liefert Informationen über chemische und physikalische Eigenschaften, indem sie die winzigen Elementarmagnete (Spins) von ungepaarten Elektronen, wie sie z.B. in chemischen Radikalen oder Defekten in Halbleitern vorliegen, anregt und abtastet. Dadurch lässt sich zum Beispiel im Blut oder auf der Haut die Konzentration von „freien Radikalen“ ermitteln, welche Krankheiten auslösen oder die Zellalterung beschleunigen können. Die ESR-Spektroskopie wird jedoch nicht nur in der Biophysik und medizinischen Diagnostik eingesetzt, sondern bringt auch die Forschung an Energiematerialien wie Katalysatoren, Batterieelektroden und Solarzellen voran.

Konventionelle ESR-Spektrometer: Ein Raum für das Gerät

Allerdings sind ESR-Spektrometer üblicherweise große und teure Geräte, die Platz benötigen und im Betrieb viel Energie verbrauchen. Denn konventionelle ESR-Spektrometer arbeiten mit einem großen Elektromagneten. Zur Messung wird die Probe im Innern des Geräts platziert und mit Mikrowellen einer festen Frequenz angeregt und das angelegte Magnetfeld wird langsam variiert. Bei ganz bestimmten Magnetfeldstärken absorbiert die Probe die Mikrowellenstrahlung,  woraus sich die Konzentration angeregter Moleküle sowie ihre energetischen Zustände in der Probe sehr genau ermitteln lassen.

ESR on a Chip: Zentimetergroß

Nun hat ein Team aus dem HZB gemeinsam mit Experten der Universität Ulm und Stuttgart ein winziges ESR-Spektrometer konstruiert, das in eine Box von zehn Zentimetern Kantenlänge passt. Nach einer erfolgreichen Live-Demonstration vor einer Fachjury auf der großen internationalen Fachtagung IEEE Sensors 2017 in Glasgow, Schottland, erhielt das Team für sein sensationelles Gerät den ersten Preis im Live-Demo-Wettbewerb: Das entwickelte Spektrometer ist nämlich nicht nur winzig, sondern besteht neben dem speziell entwickelten, preisgünstigen Detektionschip aus ebenfalls sehr preisgünstigen Standard-Komponenten und kommt als Energiequelle mit einer kleinen Batterie aus.

Anstelle des sperrigen großen Elektromagneten erzeugt ein kleiner Dauermagnet von der Größe eines Hamburgers ein konstantes Feld von 0,5 Tesla. Dafür lässt sich die Frequenz der Mikrowellenstrahlung durchstimmen: Dies wird durch den speziell entwickelten, nur Quadratmillimeter  großen Mikrochip erreicht, welcher gleichzeitig als ESR-Detektor fungiert. Diesen „ESR-on-a-Chip“-Detektor sowie die zugehörige Elektronik hat Prof. Dr. Jens Anders an der Universität Ulm entworfen. Nach seinem Ruf auf eine W3-Professur an die Universität Stuttgart arbeiten Prof. Anders und sein Team an weiteren Verbesserungen, um die ESR-Technologie in Zukunft einem breiten Anwenderkreis verfügbar machen zu können.

„Während man bei konventionellen ESR-Spektrometern die Probe ins Gerät setzt, könnte man mit dieser Neuerung den Mikrochip sogar in die Probe hineinplatzieren, beispielsweise um Tumorzellen im Körper zu untersuchen“, erläutert Prof. Dr. Klaus Lips, der am Berliner EPR-Labor am HZB das Gerät mitentwickelt hat. 

„Dass wir mit unserem ESR-on-a-Chip den ersten Preis bei der Demosession auf der IEEE Sensors 2017 gewonnen haben, freut uns enorm, zumal das HZB dazu alle relevanten Patente für eine zukünftige Anwendung hat“, sagt Lips. „Schon jetzt haben wir Angebote von führenden Herstellern, die an Lizenzen interessiert sind.“

Live Demonstration: A VCO-based point-of-care ESR spectrometer, B. Schlecker, A. Chu, J. Handwerker, S. Künstner, M. Ortmanns, K. Lips und J. Anders.

(arö)

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Nachricht
    26.03.2025
    Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Samira Jama Aden, Architektin in der Beratungstelle für bauwerkintegrierte Photovoltaik (BAIP), ist der Arbeitsgruppe “Environmental, Social and Governance (ESG)” der ETIP PV - The European Technology & Innovation Platform for Photovoltaics beigetreten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.