HZB knüpft Kontakte zum argentinischen Neutronenzentrum

Foto v.l.n.r.: Dr. Javier Santisteban (wissenschaftlicher Direktor des LAHN), Thomas Frederking (kaufmännischer Geschäftsführer des HZB), Karina Pierpauli (CEO des LAHN) und Prof. Dr. Bernd Rech (wissenschaftlicher Geschäftsführer des HZB) kamen zur Vertragsunterzeichnung in Berlin zusammen. Foto: Silvia Zerbe

Foto v.l.n.r.: Dr. Javier Santisteban (wissenschaftlicher Direktor des LAHN), Thomas Frederking (kaufmännischer Geschäftsführer des HZB), Karina Pierpauli (CEO des LAHN) und Prof. Dr. Bernd Rech (wissenschaftlicher Geschäftsführer des HZB) kamen zur Vertragsunterzeichnung in Berlin zusammen. Foto: Silvia Zerbe

Das Helmholtz-Zentrum Berlin (HZB) hat eine Kooperationsvereinbarung mit der argentinischen Forschungseinrichtung für Neutronenforschung - LAHN (Argentinian Neutron Beams Laboratory) unterzeichnet. Das HZB wird dabei die Forschenden aus Argentinien beim Aufbau von zwei Neutroneninstrumenten beraten. Darüber hinaus ist ein Austauschprogramm für Forschende aus beiden Ländern geplant.

Das LAHN will ein Instrument für Eigenspannungsanalyse und für Neutronentomographie an seinem Forschungsreaktor RA-10 aufbauen. Dabei werden die Forschenden aus Buenos Aires von den HZB-Wissenschaftlern beraten, die langjährige, weltweit anerkannte Expertise in der Entwicklung von Neutronenexperimenten haben. Eine erste konkrete Maßnahme ist: Ein Postdoktorand aus Argentinien wird Anfang 2018 an das HZB kommen und sich vor Ort von den Expertinnen und Experten ausbilden lassen.

Bei der Vertragsunterzeichnung Ende September 2017 waren der CEO des LAHN, Ing. Karina Pierpauli, und Dr. Javier Santisteban, wissenschaftlicher Direktor, zu Gast am HZB. Sie besichtigten die Experimentierhallen um den Forschungsreaktor BER II und kamen zu Gesprächen mit der Geschäftsführung des HZB und den Neutronenforschern zusammen. „Durch die Kooperation mit dem LAHN stärken wir den Wissenstransfer und treiben die Internationalisierungsstrategie des HZB weiter voran“, sagt Dr. Catalina Elena Jimenez, die zuständige Referentin für Internationalisierung im HZB-Geschäftsführungsbüro.

Kooperationspartner: Laboratorio Argentino de Haces de Neutrones

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.