Rekord-Solarzellen in HyPerCells Graduiertenschule

Labortour am HZB-Institut f&uuml;r Siliziumphotovoltaik, anl&auml;sslich des HyPerCells Forschungskolloquiums im Mai 2017. </p>
<p>

Labortour am HZB-Institut für Siliziumphotovoltaik, anlässlich des HyPerCells Forschungskolloquiums im Mai 2017.

© HZB

Die aktive Perowskit-Schicht war nur 350 nm dick. Sie ist in organische Schichten aus dem Fulleren C60 und dem Polymer PTAA eingebettet.

Die aktive Perowskit-Schicht war nur 350 nm dick. Sie ist in organische Schichten aus dem Fulleren C60 und dem Polymer PTAA eingebettet. © HZB/Uni Potsdam

Stromdichte-Spannungskurve einer Perowskit-Solarzelle mit einer Effizienz von 21.4&nbsp;%. Daten: Martin Stolterfoht und Christian Wolff, Universit&auml;t Potsdam.

Stromdichte-Spannungskurve einer Perowskit-Solarzelle mit einer Effizienz von 21.4 %. Daten: Martin Stolterfoht und Christian Wolff, Universität Potsdam.

Erst vor zwei Jahren haben die Universität Potsdam und das Helmholtz-Zentrum Berlin die Graduiertenschule HyPerCells mit dem Forschungsschwerpunkt Perowskite gegründet. Nun haben Gruppen im Rahmen der Graduiertenschule Perowskit-Solarzellen mit Rekord-Effizienzen von über 20 Prozent hergestellt. Damit ist die Graduiertenschule in Deutschland absoluter Spitzenreiter und im internationalen Vergleich (ganz) vorne mit dabei.

Hybride Perowskite zählen zu den vielversprechendsten Halbleitermaterialien für neuartige Dünnschichtsolarzellen. Hohe Absorptionskoeffizienten und eine über einen weiten Bereich einstellbare optische Bandlücke machen diese Materialklasse einzigartig. Besonders attraktiv ist dabei die Kombination einer Perowskit-Zelle mit klassischen Halbleitermaterialien wie beispielsweise Silizium in hocheffizienten Tandem-Solarzellen.

Vor diesem Hintergrund wurde vor zwei Jahren die Graduiertenschule HyPerCells gegründet, gemeinschaftlich organisiert durch die Universität Potsdam und das Helmholtz-Zentrum Berlin. In HyPerCells forschen derzeit 15 Doktorandinnen und Doktoranden aus Fachgebieten wie Chemie, Physik, Elektrotechnik und Kristallographie an dem Verständnis und der Weiterentwicklung von Materialien und Zellstrukturen. Erst kürzlich haben sich drei am HZB beheimate Nachwuchsgruppen der Schule angeschlossen. Diese Erweiterung ermöglicht es der Schule, auch anwendungsrelevante Aspekte dieser brisanten Materialklasse im Detail zu verstehen. Wichtige Forschungsthemen der Nachwuchsgruppen geleitet von Steve Albrecht, Eva Unger und Antonio Abate sind die Entwicklung neuer Schichtstrukturen für Tandem-Solarzellen, die Herstellung großflächiger Zellen mittels Drucktechnologien und die Untersuchung von Degradationsmechanismen.

Und das Konzept geht auf. In den letzten Monaten ist es gelungen, Perowskit-Solarzellen mit Rekord-Effizienzen von über 20 Prozent zu realisieren. Das ist ein Spitzenwert für sogenannte „invertierte“ Perowskit-Solarzellen bei Verwendung undotierter Kontaktschichten. Damit ist die Graduiertenschule in Deutschland absoluter Spitzenreiter und im internationalen Vergleich (ganz) vorne mit dabei. Wesentlich für diese Erfolge war ein detailliertes Verständnis der relevanten physikalischen und chemischen Prozesse in diesen Solarzellen. Dieses und weitere wichtige Ergebnisse dieses neuen Photovoltaikmaterials wurden jüngst in hochrangigen Journalen wie Advanced Materials, Energy & Environmental Science, ACS Applied Materials and Interfaces, und Advanced Optical Materials veröffentlicht. Auch auf nationalen und internationalen Konferenzen sind Studenten der Graduiertenschule zunehmend präsent.

Weitere Informationen: www.perovskites.de/

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.
  • Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    Nachricht
    24.10.2024
    Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    ETIP PV ist ein Fach-Gremium, das die Europäische Kommission zu Photovoltaik berät. Nun hat der ETIP PV-Lenkungsausschuss einen neuen Vorsitzenden sowie zwei stellvertretende Vorsitzende für die Amtszeit 2024–2026 gewählt. Rutger Schlatmann, Bereichssprecher Solare Energie am HZB und Professor an der HTW Berlin, wurde als Vorsitzender wiedergewählt.