Rekord-Solarzellen in HyPerCells Graduiertenschule

Labortour am HZB-Institut f&uuml;r Siliziumphotovoltaik, anl&auml;sslich des HyPerCells Forschungskolloquiums im Mai 2017. </p>
<p>

Labortour am HZB-Institut für Siliziumphotovoltaik, anlässlich des HyPerCells Forschungskolloquiums im Mai 2017.

© HZB

Die aktive Perowskit-Schicht war nur 350 nm dick. Sie ist in organische Schichten aus dem Fulleren C60 und dem Polymer PTAA eingebettet.

Die aktive Perowskit-Schicht war nur 350 nm dick. Sie ist in organische Schichten aus dem Fulleren C60 und dem Polymer PTAA eingebettet. © HZB/Uni Potsdam

Stromdichte-Spannungskurve einer Perowskit-Solarzelle mit einer Effizienz von 21.4&nbsp;%. Daten: Martin Stolterfoht und Christian Wolff, Universit&auml;t Potsdam.

Stromdichte-Spannungskurve einer Perowskit-Solarzelle mit einer Effizienz von 21.4 %. Daten: Martin Stolterfoht und Christian Wolff, Universität Potsdam.

Erst vor zwei Jahren haben die Universität Potsdam und das Helmholtz-Zentrum Berlin die Graduiertenschule HyPerCells mit dem Forschungsschwerpunkt Perowskite gegründet. Nun haben Gruppen im Rahmen der Graduiertenschule Perowskit-Solarzellen mit Rekord-Effizienzen von über 20 Prozent hergestellt. Damit ist die Graduiertenschule in Deutschland absoluter Spitzenreiter und im internationalen Vergleich (ganz) vorne mit dabei.

Hybride Perowskite zählen zu den vielversprechendsten Halbleitermaterialien für neuartige Dünnschichtsolarzellen. Hohe Absorptionskoeffizienten und eine über einen weiten Bereich einstellbare optische Bandlücke machen diese Materialklasse einzigartig. Besonders attraktiv ist dabei die Kombination einer Perowskit-Zelle mit klassischen Halbleitermaterialien wie beispielsweise Silizium in hocheffizienten Tandem-Solarzellen.

Vor diesem Hintergrund wurde vor zwei Jahren die Graduiertenschule HyPerCells gegründet, gemeinschaftlich organisiert durch die Universität Potsdam und das Helmholtz-Zentrum Berlin. In HyPerCells forschen derzeit 15 Doktorandinnen und Doktoranden aus Fachgebieten wie Chemie, Physik, Elektrotechnik und Kristallographie an dem Verständnis und der Weiterentwicklung von Materialien und Zellstrukturen. Erst kürzlich haben sich drei am HZB beheimate Nachwuchsgruppen der Schule angeschlossen. Diese Erweiterung ermöglicht es der Schule, auch anwendungsrelevante Aspekte dieser brisanten Materialklasse im Detail zu verstehen. Wichtige Forschungsthemen der Nachwuchsgruppen geleitet von Steve Albrecht, Eva Unger und Antonio Abate sind die Entwicklung neuer Schichtstrukturen für Tandem-Solarzellen, die Herstellung großflächiger Zellen mittels Drucktechnologien und die Untersuchung von Degradationsmechanismen.

Und das Konzept geht auf. In den letzten Monaten ist es gelungen, Perowskit-Solarzellen mit Rekord-Effizienzen von über 20 Prozent zu realisieren. Das ist ein Spitzenwert für sogenannte „invertierte“ Perowskit-Solarzellen bei Verwendung undotierter Kontaktschichten. Damit ist die Graduiertenschule in Deutschland absoluter Spitzenreiter und im internationalen Vergleich (ganz) vorne mit dabei. Wesentlich für diese Erfolge war ein detailliertes Verständnis der relevanten physikalischen und chemischen Prozesse in diesen Solarzellen. Dieses und weitere wichtige Ergebnisse dieses neuen Photovoltaikmaterials wurden jüngst in hochrangigen Journalen wie Advanced Materials, Energy & Environmental Science, ACS Applied Materials and Interfaces, und Advanced Optical Materials veröffentlicht. Auch auf nationalen und internationalen Konferenzen sind Studenten der Graduiertenschule zunehmend präsent.

Weitere Informationen: www.perovskites.de/

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.