HZB-Publikation in der Festschrift des Journal of Physics D: Applied Physics

Ein Beispiel aus der Arbeit: Die „operando-Radiographie" (A)–(C) zeigt, wie sich beim Entladen und Laden einer Lithium-Schwefel-Zelle Schwefelverbindungen (schwarze Strukturen) auf der Kohlenstoff-Kathode (grau) ablagern.

Ein Beispiel aus der Arbeit: Die „operando-Radiographie" (A)–(C) zeigt, wie sich beim Entladen und Laden einer Lithium-Schwefel-Zelle Schwefelverbindungen (schwarze Strukturen) auf der Kohlenstoff-Kathode (grau) ablagern. © HZB

Das „Journal of Physics D: Applied Physics“ hat eine Arbeit zur Röntgentomographie an unterschiedlichen Batterietypen als Highlight für die Veröffentlichung in einem exklusiven Sonderband ausgewählt. An der Publikation waren zwei Gruppen am HZB und ein Team der Justus-Liebig-Universität Gießen beteiligt.


“Wir haben diese Arbeit wegen ihrer Neuigkeit, Relevanz und des breiten Anwendungsbereich ausgewählt“, schreibt der Chefredakteur Tom Miller. Die Arbeit ist nun zusätzlich in einem Sonderband (Special issue on Synchrotron- and FEL-based X-ray Methods for Battery Studies) zum 50-jährigen Bestehen des Journals publiziert. Tatsächlich zeigt der Beitrag, dass die Röntgentomographie sehr vielseitig anwendbar ist und für die Forschung an unterschiedlichen Batterietypen großen Erkenntniszuwachs verspricht. 

Die Röntgen-Computertomografie kombiniert Röntgenbilder zu dreidimensionalen Abbildungen. Diese zeigen, welche Prozesse im Innern von Materialien ablaufen. So lassen sich Transportprozesse und chemische Reaktionen in neuartigen Batteriesystemen untersuchen. Diese Prozesse sind bislang unzureichend verstanden, weswegen es schwierig ist, gezielt Verbesserungen zu erreichen.

In ihrem Beitrag stellen die Forscher nicht nur den Nutzen der Röntgentomographie für die Forschung an Batterien ganz allgemein vor, sondern sie präsentieren auch zahlreiche konkrete Beispiele für die Aussagekraft von tomographischen Abbildungen, zum Beispiel von Zink-Sauerstoff-Batterien, Natrium-Sauerstoff-Batterien und Metall-Schwefel-Batterien. Dabei zeigen sie, welche Prozesse die Speicherkapazität der Batterien jeweils begrenzen und warum die Leistungsfähigkeit mit der Anzahl der Ladezyklen abnimmt.  

Zur Publikation im Journal of Physics D: Applied Physics, Volume 49, Number 40 (2016): „In operando x-ray tomography for next-generation batteries: a systematic approach to monitor reaction product distribution and transport processes“
D. Schroder, C. L. Bender, T. Arlt, M. Osenberg, A. Hilger, S. Risse, M. Ballauff, I. Manke and J. Janek

DOI:10.1088/0022-3727/49/40/404001

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.