Dreidimensionales Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

REM-Aufnahmen von<strong> </strong>3D-Graphen mit unterschiedlichen Porengr&ouml;&szlig;en (a,b,c, Strich in a entspricht 1&mu;m). Dadurch lassen die optischen Eigenschaften (d,e,f) pr&auml;zise einstellen.

REM-Aufnahmen von 3D-Graphen mit unterschiedlichen Porengrößen (a,b,c, Strich in a entspricht 1μm). Dadurch lassen die optischen Eigenschaften (d,e,f) präzise einstellen. © 10.1038/ncomms14885

Eine internationale Forschergruppe hat an der Infrarot-Beamline IRIS am Elektronenspeicherring BESSY II erstmals die optischen Eigenschaften von dreidimensionalem nanoporösen Graphen untersucht. Die Experimente zeigen, dass sich die plasmonischen Anregungen (Schwingungen der Ladungsdichte) in diesem neuen Material durch Porengröße und das Einbringen von Fremdatomen präzise steuern lassen. Dies könnte die Herstellung von hochempfindlichen chemischen Sensoren ermöglichen.

Kohlenstoff ist ein sehr vielseitiges Element. Es bildet nicht nur Diamanten, Graphit und Kohle, sondern kann sich auch in der Ebene zu einem flachen Netz mit sechseckigen Maschen verbinden, dem Graphen. Dieses aus nur einer Atomlage bestehende Material besitzt eine Reihe extremer Eigenschaften, es ist hochleitfähig, optisch transparent und mechanisch sowohl flexibel als auch belastbar. Für die Entdeckung dieser exotischen Kohlenstoff-Form erhielten André Geim und Konstantin Novoselov 2010 den Nobelpreis für Physik. Und erst vor kurzem ist es einem japanischen Team gelungen, zweidimensionales Graphen zu einer dreidimensionalen Architektur mit nanometergroßen Poren aufeinanderzustapeln.

Plasmonen nach Wunsch

Ein Forscherteam unter Federführung einer Gruppe der Universität Sapienza in Rom hat nun erstmals die optischen Eigenschaften von 3D-Graphen eingehend an BESSY II untersucht. Das Team konnte aus den gemessenen Daten ermitteln, wie sich Ladungsdichteschwingungen, so genannte Plasmonen, im dreidimensionalen Graphen ausbreiten. Dabei stellten sie fest, dass diese Plasmonen den gleichen Gesetzmäßigkeiten wie in 2D-Graphen folgen. Die Frequenz der Plasmonen lässt sich im 3D-Graphen jedoch sehr genau kontrollieren: entweder durch Einbringen von Fremdatomen (Dotierung) oder über die Größe der Nanoporen, oder auch, indem man bestimmte Moleküle gezielt an das Graphen anlagert. Damit könnte sich das neuartige Material auch für die Herstellung von spezifischen chemischen Sensoren eignen, schreiben die Autoren in Nature Communications. Es ist außerdem interessant als Elektrodenmaterial für den Einsatz in Solarzellen.

Vorteile der IRIS-Beamline genutzt

Für ihre Untersuchungen haben die Forscher die IRIS-Beamline an der Berliner Synchrotronquelle BESSY II genutzt. Dort steht breitbandige Infrarotstrahlung zur Verfügung, was insbesondere die spektroskopische Untersuchung von neuartigen Materialien mit Terahertz-Strahlen ermöglicht. „Durch den low-Alpha Modus, eine besondere Betriebsform des BESSY II-Speicherrings, war es möglich, die optische Leitfähigkeit von dreidimensionalem Graphen mit besonders hohem Signal-zu-Rausch Verhältnis zu messen. Mit Standard-Methoden ist dies vor allem im Terahertz-Bereich kaum möglich. Gerade dieser Bereich ist aber wichtig, um entscheidende physikalische Eigenschaften zu beobachten“, sagt Dr. Ulrich Schade, Gruppenleiter an der Infrarot-Beamline.

 

Die Arbeit wurde in Nature Communications (2017) publiziert: „Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene“; Fausto D’Apuzzo, Alba R. Piacenti, Flavio Giorgianni, Marta Autore, Mariangela Cestelli Guidi,Augusto Marcelli, Ulrich Schade, Yoshikazu Ito, Mingwei Chen & Stefano Lupi

DOI: 10.1038/ncomms14885

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.  

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.