Meilenstein für die Energieforschung am Campus Wannsee

Prof. Dr. Anke Kaysser-Pyzalla, Prof. Dr. Roel van de Krol, Dirk Mielke, Dr. Catherine Dubourdieu und Monica Wurfbaum (v.l.n.r.). Foto: HZB/J. Bierbaum

Prof. Dr. Anke Kaysser-Pyzalla, Prof. Dr. Roel van de Krol, Dirk Mielke, Dr. Catherine Dubourdieu und Monica Wurfbaum (v.l.n.r.). Foto: HZB/J. Bierbaum

Am 23. März 2017 wurde die Grundsteinlegung für ein Laborgebäude gefeiert, das vielfältige Methoden für die Synthese und Charakterisierung von Energiematerialien bieten wird.

Seit Anfang des Jahres wird gebaut: In Wannsee entsteht derzeit ein neues Gebäude für die Energieforschung im Rahmen der Helmholtz Energy Materials Foundry (HEMF). Schon im Dezember 2017 soll es fertig werden. Zahlreiche Mitarbeitende und Baupartner feierten zusammen mit den wissenschaftlichen Projektleitenden und der Geschäftsführung die Grundsteinlegung für den flexibel nutzbaren Laborkomplex. In dem zweistöckigen Gebäude werden jeweils 135 Quadratmeter große Flächen für die physikalische Chemie zur Verfügung stehen. In das Erdgeschoss wird das Institut Funktionale Oxide für energieeffiziente Informationstechnologien (EM-IFOX) einziehen.

Prof. Dr. Anke Kaysser-Pyzalla betonte: „Der Neubau des Laborgebäudes ist ein wichtiges Zukunftsprojekt für den Campus Wannsee und ergänzt die vorhandenen Forschungsmöglichkeiten in der Energie-Material-Forschung perfekt. Damit verbreitern wir insbesondere unser Portfolio in der Materialsynthese. Das ist eine entscheidende Voraussetzung, um gezielt Energiematerialien mit interessanten Funktionen und Eigenschaften zu entwickeln.“ 

In dem Labor sollen Materialien und Anwendungen für die energieeffiziente IT sowie Materialien für die Umwandlung von Kohlenstoffdioxid in wertvolle Kohlenwasserstoffe entwickelt werden. „Diese Themen sind nicht nur sehr spannende und herausfordernde Forschungsfelder. Sie gehören zu den Schlüsselfragen, die für den Umstieg auf eine effiziente und klimafreundliche Energieversorgung der Zukunft gelöst werden müssen“, erläuterte der HZB-Projektleiter für die Helmholtz Energy Materials Foundry, Prof. Dr. Roel van de Krol.

Dr. Catherine Dubourdieu, Leiterin des Instituts EM-IFOX, wird in dem Labor mit ihrem Team Metalloxide erforschen. Diese Materialien weisen ein außerordentlich breites Spektrum elektrischer, magnetischer, optischer und mechanischer Eigenschaften auf. „Dies bietet ein riesiges Potenzial für die Entwicklung neuer Bauelemente, die extrem effizient sind und besondere Funktionen besitzen. Unser Ziel ist es, diese funktionalen Oxide so weiterzuentwickeln, dass sie einen großen Anwendungsbereich abdecken. Sie sollen so vielfältig einsetzbar werden wie die heute weit verbreiteten Halbleiter-Heterostrukturen“, sagt Dr. Catherine Dubourdieu. Was sie genau vorhat und welche Synthese- und Charakterisierungsmöglichkeiten im Labor geplant sind, erläutert sie hier.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.