Neuer Rekord an BESSY II: Zehn Millionen Ionen in einer Ionen-Falle erstmals bis auf 7,4 Kelvin gekühlt

Die zweiatomaren Nickel-Ionen (grau) sind bei tiefen Temperaturen in einer RF-Ionenfalle gefangen, dabei dient kaltes Helium-Gas (blau) zur Wärmeabfuhr. Das magnetische Feld richtet die Ionen aus.

Die zweiatomaren Nickel-Ionen (grau) sind bei tiefen Temperaturen in einer RF-Ionenfalle gefangen, dabei dient kaltes Helium-Gas (blau) zur Wärmeabfuhr. Das magnetische Feld richtet die Ionen aus. © T. Lau/ HZB

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen elektrisch geladene Molekül-Ionen gefangen sind. Es gelang ihnen, mit einem Puffergas etwa zehn Millionen Ionen auf 7,4 Kelvin (ca. -265,8 Grad Celsius) abzukühlen. Das ist ein neuer Rekord. Zuvor war es nur möglich, etwa tausend Ionen mit Puffergas auf 7,5 Kelvin abzukühlen. Für spektroskopische Analysen reichen tausend Ionen jedoch bei weitem nicht aus. Mit der neuen Methode steht erstmals eine Ionenfalle für die Röntgenspektroskopie bei tiefen Temperaturen bereit, mit der man den Magnetismus und Grundzustände von Molekül-Ionen untersuchen kann. Dies liefert die Grundlagen, um neue Materialien für eine energieeffiziente Informationstechnologie zu entwickeln. Die Arbeit ist im Journal of Chemical Physics veröffentlicht.

„Bisher gingen alle davon aus, dass es nicht möglich sei, mit einer Quadrupol-Ionenfalle für so hohe Ionendichten noch tiefere Temperaturen zu erreichen. Aber es geht eben doch“, sagt HZB-Forscher Tobias Lau. Denn das elektromagnetische Wechselfeld fängt die gespeicherten Ionen nicht nur ein, sondern „schüttelt“ sie auch, so dass sie ständig Energie gewinnen und die Temperatur steigt. Um diese Energie wieder abzuführen, hat das Team Helium als Puffergas eingeführt, und zwar mit relativ hohem Druck. „Man muss sich dies als eine Art kalten Sirup vorstellen, der die Makro-Bewegungen der Teilchen dämpft und Rotation und Translation verlangsamt“, sagt Vicente Zamudio-Bayer von der Universität Freiburg.

Einzigartiger Versuchsaufbau

Die Experimente wurden an der UE52-PGM-Endstation an BESSY II durchgeführt, wo sich die Polarisation der weichen Röntgenstrahlung variabel einstellen lässt. Der Versuchsaufbau an dieser Beamline ist weltweit einzigartig, weil er die Untersuchung von Ionen bei tiefen Temperaturen mit Magnetfeldern und Röntgenspektroskopie ermöglicht. Dabei kann die Probe unter einem äußeren Magnetfeld mit zirkular polarisiertem Röntgenlicht analysiert werden (zirkularer magnetischer Röntgen-Dichroismus, engl. XMCD). Dies gibt Aufschluss über die magnetischen Momente der Elektronen, unterteilt in ihre Spin- und Bahnbeiträge. 

Magnetische Momente von Nickel2-Ionenermittelt

„Durch die besonders tiefen Temperaturen konnten wir erstmals die magnetischen Momente von Nickel-Dimer-Kationen experimentell ermitteln“, erklärt Lau. Die Arbeit an der Ionenfalle ist Teil eines größeren Projekts von HZB und Uni Freiburg, das durch das BMBF (BMBF-05K13Vf2) gefördert wird.

Ausblick: Noch tiefere Temperaturen

„Wir arbeiten nun daran, noch tiefere Temperaturen zu erreichen. Wir hoffen, dass wir bald bis auf 5 Kelvin kommen“, sagt Zamudio-Bayer. Denn je tiefer die Temperatur, desto deutlicher zeigen sich magnetische Effekte.

Auch die Nutzer profitieren

Alle Nutzer der Ionenfalle an der UE52-PGM-Endstation an BESSY II können aber jetzt schon von dem Rekord profitieren. „Hier lassen sich nicht nur der Magnetismus, sondern auch viele weitere Eigenschaften von ganz unterschiedlichen Molekülen spektroskopisch untersuchen, zum Beispiel auch von Übergangsmetall-Komplex-Ionen. Das wird also für viele Nutzergruppen, insbesondere aus der physikalischen Chemie, attraktiv sein“, meint Lau.

Zur Publikation:Electronic ground state of Ni2+, V. Zamudio-Bayer, R. Lindblad, C. Bülow, G. Leistner, A. Terasaki, B. v. Issendorff, and J. T. Lau, J. Chem. Phys. 145, 194302 (2016). DOI: 10.1063/1.4967821

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.