Forschen für die Energiewende: EMIL@BESSY II startklar für das Kopernikus Projekt „Power-to-X“

Das neue Energy Materials in situ Laboratory (EMIL) mit direktem Zugang zum Röntgenlicht von BESSY II wurde am 31. Oktober eröffnet.

Das neue Energy Materials in situ Laboratory (EMIL) mit direktem Zugang zum Röntgenlicht von BESSY II wurde am 31. Oktober eröffnet. © HZB

Das Speichern von Überschussstrom aus Solar- und Windenergie zählt zu den großen Herausforderungen der Energiewende. Daher hat das Bundesministerium für Bildung und Forschung (BMBF) das Kopernikus-Projekt „Power-to-X“ (P2X) aufgesetzt, um Forschungsprojekte zur Umwandlung von elektrischer Energie aus Sonne und Wind in chemische Grundstoffe, gasförmige Energieträger und Kraftstoffe voran zu bringen. An dem Forschungsvorhaben beteiligt sich auch das Helmholtz-Zentrum Berlin. Mit dem jetzt eröffneten Laborkomplex EMIL@BESSY II stehen einzigartige Synthese- und Analytiktools mit direktem Zugang zum Röntgenlicht von BESSY II zur Verfügung. Insgesamt sind 17 Forschungseinrichtungen, 26 Industrieunternehmen sowie drei zivilgesellschaftliche Organisationen eingebunden. In der ersten Entwicklungsphase fördert das BMBF das Projekt mit 30 Millionen Euro.

Strom aus Sonne oder Wind fluktuiert mit dem Wetter, der Tages- und Jahreszeit. Daher ist eine der wichtigsten Bedingungen für eine erfolgreiche Energiewende, effiziente Speicherlösungen zu entwickeln. Mit dem Kopernikus-Projekt „Power-to-X“ (P2X) will das BMBF Technologien vorantreiben, die den Überschussstrom aus Sonne oder Wind elektrochemisch in gasförmige Energieträger (wie z.B. Wasserstoff) oder chemische Grundstoffe umwandeln, die im Anschluss gespeichert oder zu Treibstoffen und Chemieprodukten weiterverarbeitet werden können. Solche P2X-Technologien werden einen zentralen Beitrag zur Energiewende leisten. Das Kopernikus-Projekt P2X soll innerhalb von zehn Jahren neue technologische Entwicklungen zur industriellen Reife bringen.

Das HZB stellt mit dem gerade eröffneten Energy Materials In-Situ Laboratory Berlin (EMIL) einmalige Synthese- und Charakterisierungsmöglichkeiten zur Verfügung. Die Arbeitsgruppen von Prof. Bernd Rech und Prof. Marcus Bär sind daher an dem Projekt beteiligt: „Innerhalb des Projektes werden wir die vielseitigen und komplementären Analysemöglichkeiten im EMIL-Labor nutzen, um die chemischen und elektronischen Eigenschaften der von den Projektpartnern entwickelten Katalysatoren zu untersuchen“, erläutert Marcus Bär, der die P2X-Aktivitäten am HZB koordiniert.

Ein wesentliches Augenmerk wird darauf liegen, wie sich die Katalysatormaterialien im Elektrolyten unter realen Arbeitsbedingungen ändern. Dies ist entscheidend, da die katalytisch aktive Spezies oft erst im Betrieb generiert wird. Ihre Stabilität bestimmt dann auch die Alterung und damit die Lebensdauer des Elektrolyseurs. „Wir werden im Rahmen des Kopernikus-Projekts die experimentellen Anlagen des EMIL-Labors nochmal erweitern, um solche ‚operando‘ Untersuchungen unter echten atmosphärischen Bedingungen zu ermöglichen“, führt er aus.

Zusätzlich zur Förderung durch das BMBF bringen Industriepartner Forschungsleistungen im Umfang von weiteren 8,3 Millionen Euro ein. Mit P2X wird ein Forschungsverbund aufgebaut, der bestehende Großprojekte und vorhandene Infrastrukturen mit einbezieht und Schnittstellen zur Industrie ausbaut. Das Projekt wird von der RWTH Aachen, dem Forschungszentrum Jülich und der DECHEMA gemeinsam koordiniert.

 

Weitere Informationen auf der BMBF-Webseite: https://www.bmbf.de/de/sicher-bezahlbar-und-sauber-2624.html

 

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.