HZB und ANSTO erweitern ihr Memorandum zur wissenschaftlichen Zusammenarbeit

<span class="Beschriftung1"><span>ANSTO: Adi Paterson, Simone Richter, HZB: Prof Anke Kaysser-Pyzalla und Thomas Frederking (v.l.n.r.). </span></span>

ANSTO: Adi Paterson, Simone Richter, HZB: Prof Anke Kaysser-Pyzalla und Thomas Frederking (v.l.n.r.). © ANSTO

Gemeinsam die Energie-Material-Forschung vorantreiben

Die Verantwortlichen des HZB und der Australian Nuclear Science and Technology Organisation (ANSTO) haben ihr Memorandum of Understanding deutlich erweitert, das seit 2015 zwischen beiden Einrichtungen besteht. Insbesondere wollen sie die Zusammenarbeit im Bereich der Energie-Material-Forschung weiter verstärken.

Das Memorandum umfasst Vereinbarungen zum Austausch von Personal, zu Fortbildungen und zum gegenseitigen Zugang zu Instrumenten an den Großgeräten von ANSTO und dem HZB. Das Australische Forschungszentrum ANSTO liegt in der Nähe von Sydney und betreibt eine Synchrotronquelle und andere Infrastrukturen, darunter auch den Forschungsreaktor OPAL und ein Zentrum für Neutronenstreuung. Von der Berliner Neutronenquelle BER II, die Ende 2019 abgeschaltet wird, übernimmt ANSTO das BioRef-Reflektometer, das Forschung an weicher Materie und Fest-Flüssig-Grenzflächen ermöglicht. Unter dem Namen „Spatz“ wird es ab 2018 der Nutzergemeinschaft zur Verfügung stehen. ANSTO ist auch auf dem Feld der Beschleunigerforschung aktiv, einem Gebiet, auf dem auch das HZB international sehr sichtbar ist.  

Auch mit weiteren australischen Spitzeneinrichtungen hat das HZB die Kooperation verstärkt. So hat die renommierte Monash-Universität im Sommer 2016 drei HZB-Wissenschaftler aus dem Bereich der Energie-Material-Forschung zu außerplanmäßigen Professoren ernannt.

Mehr Informationen zu ANSTO : http://www.ansto.gov.au

 

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Science Highlight
    01.07.2024
    Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Stellt man aus Biomasse Biodiesel her, fällt als Nebenprodukt Glycerin an. Bislang wird dieses Nebenprodukt jedoch wenig genutzt, obwohl es durch Oxidation in photoelektrochemischen Reaktoren (PEC) zu wertvolleren Chemikalien verarbeitet werden könnte. Der Grund dafür: geringe Effizienz und Selektivität. Nun hat ein Team um Dr. Marco Favaro vom Institut für Solare Brennstoffe am HZB den Einfluss der Elektrolyte auf die Effizienz der Glycerin-Oxidations-Reaktion in PEC-Reaktoren untersucht und Ergebnisse erhalten, die dabei helfen, effizientere und umweltfreundlichere Produktionsverfahren zu entwickeln.