Methodenentwicklung an BESSY II: Standard-Röntgenspiegel nun auch für ultraschnelle Experimente einsetzbar

Die Röntgenreflektivität des Mo/Si Multilagenspiegels wird durch den um Δt zeitversetzten Laserpuls stark verändert.

Die Röntgenreflektivität des Mo/Si Multilagenspiegels wird durch den um Δt zeitversetzten Laserpuls stark verändert. © HZB

Elektronische, magnetische und strukturelle Prozesse in Energiematerialien finden auf Zeitskalen zwischen Femtosekunden und 100 Pikosekunden statt. Um solche Prozesse zu beobachten, wird die Probe mit einem ersten Lichtpuls angeregt und dann mit einem zeitlich verzögerten Abfragepuls „abgetastet“. Dabei ist es allerdings entscheidend, dass der zeitliche Überlapp beider ultrakurzen Lichtpulse exakt bekannt ist. Nun hat ein Team vom HZB und der Universität Potsdam eine neue und überraschend simple Lösung gefunden, um auch bei Lichtpulsen mit unterschiedlichen Wellenlängen, z.B. aus dem Infrarot- und Röntgenbereich, den zeitlichen Überlapp genau zu messen: Sie setzen dafür einen Standard-Röntgenspiegel ein, der auch sonst in BESSY II  verwendet wird. Der Spiegel besteht aus alternierenden Nanolagen von Molybdän und Silizium, die durch Laseranregung dynamisch ihre Dicke ändern, was sich auf die Reflektivität des Spiegels auswirkt.

In jedem zeitaufgelösten Anregungs-Abfrage-Experiment (Pump-Probe) ist die genaue Kenntnis vom zeitlichen und räumlichen Überlapp der Anrege- und Abfragepulse auf der Probe eine unverzichtbare Voraussetzung. Das Problem des zeitlichen Überlapps wurde in der Laser-Community zwar bereits mit Hilfe von nichtlinearen Kristallen gelöst. Es ist aber damit nicht möglich, diesen Überlapp auch bei Lichtpulsen aus ganz unterschiedlichen Spektralbereichen, so wie Röntgen- und sichtbares Licht, zu bestimmen.

Kohärente Gitterdynamik

Das wichtigste Ziel für das Team des Helmholtz-Zentrum Berlin und der Universität Potsdam war es, eine möglichst vielseitige und schnelle Kreuzkorrelationsmethode für ein breites Spektrum an Röntgen- und sichtbaren Photonen sowie für alle an BESSY II verfügbaren Zeitskalen von 100 fs bis 100 ps zu finden. Sie wählten hierfür einen Molybdän-Silizium (Mo/Si) Multilagen-Spiegel, der für den Weichröntgenbereich optimiert wurde. Der Spiegel besteht aus alternierenden Lagen von metallischem Molybdän und halbleitendem Silizium von jeweils nur wenigen Nanometern Dicke. Durch diese Multilagenstruktur enstehen sogenannten Übergitter-Bragg-Peaks in der Röntgendiffraktion, welche von etwa 100 eV bis in den harten Röntgenbereich mit einer Reflektivität von bis zu 70 Prozent detektierbar sind.

Die Experimentatoren benutzen einen Laser mit 50 fs kurzen Pulsen bei einer Wellenlänge von 800 nm  (nahes Infrarot), um selektiv nur die Molybän-Lagen in dem Mo/Si Spiegel optisch anzuregen. Das ultraschnelle Heizen von nur jeder zweiten Lage führt zu einer quasi-instantanen Erzeugung von kohärenten akustischen Phononen, welche die Reflektivität des Spiegels gleich auf zwei unterschiedlichen Zeitskalen stark verändert. Zuerst kommt es zu einer sehr schnellen Oszillation der Bragg-Peak-Intensität mit einer Amplitude von bis zu 10 Prozent und einer Periode von nur 600 fs. Anschließend verschiebt sich der Bragg-Peak auf einer Zeitskale von 10 ps bis hin zu Nanosekunden mit einer transienten Signaländerung von bis zu 20 Prozent. Beide Effekte bieten eine einfache Möglichkeit, um den zeitlichen Überlapp zwischen Röntgen- und Laserpulsen über verschiedene Zeitskalen hinaus zu finden.

Einfache Umsetzung

Das präsentierte Konzept funktioniert nicht nur für einen breiten Bereich von Photonenenergien, sondern lässt sich auch ohne Änderungen der Probenumgebungen implementieren, da die laser-induzierte Gitterdynamik unabhängig von äußeren Feldern oder Temperaturänderungen ist und somit sogar unter atmosphärischen Bedingungen gemessen werden kann. Des weiteren sind Mo/Si-Spiegel extrem widerstandsfähig gegenüber Laser- und Röntgeneinfluss oder Oxidation. Durch die Möglichkeit, die Spiegelparameter problemlos anzupassen sowie durch das tiefgreifende Verständnis der ultraschnellen Gitterdynamik in Multilagenstrukturen kann das Konzept für spezielle Anwendungen weiter optimiert und angepasst werden.

Erfolgreicher Einsatz

Kürzlich wurde der Mo/Si-Kreuzkorrelator bereits an der UE52/SGM in der Transmissions-NEXAFS-Kammer erfolgreich angewendet, um den zeitlichen Überlapp zwischen dem BESSY II Hybridbunch und Laserpulsen des neuen MHz-Lasers präzise zu bestimmen. In Zukunft wird der BESSY VSR Modus Röntgenpulse mit einer Dauer von nur wenigen Pikosekunden ständig an allen Strahlrohren für immer mehr Experimente in der Zeitdomäne bereitstellen.

Zur Publikation: "Versatile soft X-ray-optical cross-correlator for ultrafast applications",  Daniel Schick, Sebastian Eckert, Niko Pontius, Rolf Mitzner, Alexander Föhlisch, Karsten Holldack and Florian Sorgenfrei, Structural Dynamics (2016)
DOI: 10.1063/1.4964296

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.