Graphen auf Halbleitersubstrat als Kandidat für Spintronik

Die Illustration zeigt, wie die Goldatome unter dem Graphen sitzen.

Die Illustration zeigt, wie die Goldatome unter dem Graphen sitzen. © HZB

Ein elektrischer Strom kann die Spins im Graphen beeinflussen: a) Ohne Goldatome bleiben die Elektronenspins erhalten. b) Durch die Nähe zu Goldatomen drehen sich die Spins nach 40 Nanometern um 180 Grad. Dieser Effekt kann auf einem Halbleitersubstrat genutzt werden.

Ein elektrischer Strom kann die Spins im Graphen beeinflussen: a) Ohne Goldatome bleiben die Elektronenspins erhalten. b) Durch die Nähe zu Goldatomen drehen sich die Spins nach 40 Nanometern um 180 Grad. Dieser Effekt kann auf einem Halbleitersubstrat genutzt werden. © HZB

Graphen auf Siliziumkarbid könnte ein interessantes Materialsystem für künftige spintronische Bauelemente werden.  Durch eingeschleuste Goldatome kann die Spin-Bahn-Wechselwirkung punktuell so stark erhöht werden, dass sich die Spins kontrollieren lassen. Dies zeigen erste Ergebnisse an BESSY II, die nun in den Applied Physics Letters veröffentlicht sind. 

Dieses Ergebnis hat in der Zwischenzeit zu einigen Durchbrüchen geführt, die bislang jedoch einen Haken hatten: Die Unterlage, auf der die Graphenschicht abgeschieden wurde, war metallisch! Die Gold-Atome wurden zwischen Graphen und einer Unterlage aus Nickel eingeschleust. Dadurch erhöhte  sich die so genannte Spin-Bahn-Wechselwirkung um den Faktor 10.000. Für einen Effekt dieser Größe weiß man aus Rechnungen, dass sich die Spins der Elektronen systematisch drehen: alle 40 Nanometer um 180 Grad. Dennoch war es nicht möglich, mit den Spins Informationen zu übertragen. Denn da die Unterlage (Nickel) elektrisch leitfähig ist, fließen gleichzeitig viele Elektronen mit ganz ungeordneten Spins. Wegen dieses „Kurzschlusses“ lässt sich auf Nickel-Substraten der Effekt nicht nutzen.

„Reine“ Probe auf Halbleitersubstrat

Dies gelang den beiden HZB-Forschern nun in Graphen, das diesmal auf Siliziumkarbid, einem halbleitenden Substrat, abgeschieden wurde. Die Herausforderung war hier, beim Einschleusen der Goldatome eine gleichmäßige Verteilung zu erreichen. Denn in Bereichen mit nur wenigen Goldatomen lädt sich das Graphen negativ auf; in Bereichen mit mehr Goldatomen lädt es sich positiv auf und wird zum Lochleiter. Es war ausgesprochen schwierig, erinnert sich Marchenko, Erstautor der Arbeit, Proben mit ausschließlich positiver Dotierung herzustellen. Schließlich konnte er eine rein positive Probe mit spinaufgelöster Photoelektronen-Spektroskopie an BESSY II untersuchen. 

Große Effekte nur in der Nähe von Hot Spots

Das Gold-dotierte Graphen auf Siliziumkarbid zeigte dabei ein anderes Verhalten als auf Metall-Substraten. Die Erhöhung der Spin-Bahn-Kopplung um vier Größenordnungen tritt hier nur in der Nähe von bestimmten „Hot Spots“ auf: nämlich dort, wo sich die Energieniveaus von Graphen und Gold treffen.

Spin-Effekte an- und ausschalten

Damit sich diese hohe Spin-Bahn-Wechselwirkung nutzen lässt, um Spins tatsächlich zu transportieren, müsste man das Graphen demnach mit einem zweiten Element positiv dotieren oder eine zusätzliche Gate-Spannung anlegen, die diese „Hot Spots“ energetisch auf die Fermi-Energie anhebt. „Eine kleine Spannung würde schon ausreichen, um Spin-Effekte an- oder auszuschalten“, sagt Marchenko.


Zur Publikation:Rashba splitting of 100 meV in Au-intercalated graphene on SiC, D. Marchenko, A. Varykhalov, J. Sánchez-Barriga, Th. Seyller and O. Rader. Appl. Phys. Lett. 108, 172405 (2016); http://dx.doi.org/10.1063/1.4947286

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Durchbruch: Erster Elektronenstrahl im SEALab bringt Beschleunigerphysik voran
    Nachricht
    03.04.2025
    Durchbruch: Erster Elektronenstrahl im SEALab bringt Beschleunigerphysik voran
    Weltweit zum ersten Mal hat das SEALab-Team am HZB in einem supraleitenden Hochfrequenzbeschleuniger (SRF Photoinjektor) einen Elektronenstrahl aus einer Multi-Alkali-Photokathode (Na-K-Sb) erzeugt und auf relativistische Energien beschleunigt. Dies ist ein echter Durchbruch und eröffnet neue Optionen für die Beschleunigerphysik.

     

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.