Neuer Effekt beim Laserinduzierten Umschalten von Bits für höhere Speicherdichten

BFO hat eine Perowskit-Kristallstruktur.

BFO hat eine Perowskit-Kristallstruktur. © Universität Tokio

Ein internationales Team hat an BESSY II eine neue Möglichkeit entdeckt, wie sich die Informationsdichte in Speichermedien künftig weiter erhöhen lässt. Sie beschossen dafür das ferromagnetische Material BaFeO3 (BFO) mit kurzen Laserpulsen, welche einen kurzzeitigen Phasenübergang im Material bewirken. Das ermöglichte es, ansonsten stabile magnetische Regionen sehr lokal umzuschalten. Dies konnten sie mit ultrakurzen Röntgenpulsen an der Femtospex-Anlage nachweisen. Dieser Effekt könnte einen neuen Weg eröffnen, um Daten zu speichern. Die Ergebnisse sind nun in Phys. Rev. Letters publiziert.

Eine internationale Kooperation hat nun einen völlig neuen Ansatz vorgestellt, um die Energiebarriere in einem magnetischen Material zu überwinden. Sie erniedrigen die Barriere für die magnetische Manipulation, indem sie einen Phasenübergang im Material hervorrufen, vom isolierenden zum metallischen Zustand. Das Team, das von Prof. Hiroki Wadati von der Universität Tokio geleitet wird, hat das Material BaFeO3 (BFO) mit ultrakurzen Röntgenpulsen am Femtospex-Messplatz der Photonenquelle BESSY II des HZB untersucht. BFO ist ein ferromagnetischer Isolator mit stabiler magnetischer Ordnung. Wenn man das Material aber mit Laserpulsen oberhalb einer bestimmten Schwellenleistung beschießt, lässt sich dessen magnetische Ordnung auf einmal leicht manipulieren.

Ursache ist ein lokaler Phasenübergang

Die Forscher konnten den Schwellenwert für das magnetische Umschalten ermitteln und zeigen, dass sich dabei ein Übergangszustand im Material bildet: Kurzfristig wird der Isolator BFO metallisch. Anders als in üblichen magnetischen Materialien, wo Laser-Anregung einen quasi-metallischen Zustand nur für weniger als ein Billionstel einer Sekunde herbeiführt, stabilisiert sich in BFO der metallische Zustand selbst. Er bleibt dadurch etwa tausendmal länger erhalten und besteht damit lange genug, um in dieser Zeit z.B. Bits mit einem kurzen Magnetfeldpuls zu schreiben. Dadurch ist der Effekt für technische Anwendungen interessant. 

Ultraschneller Prozess am Femtospex-Messplatz beobachtet

Die Ergebnisse, die nun in Phys. Rev. Letters publiziert sind, zeigen einen neuen Weg auf, um Daten zu manipulieren. Solch ein umfassendes Bild von ultraschnellen Prozessen in einem Material zu gewinnen war möglich, weil der Femtospex-Messplatz an BESSY II des HZB, es erlaubt, magnetische und spektroskopische Informationen in ein und demselben Experiment zu gewinnen.

Zur Publikation: Photoinduced Demagnetization and Insulator-to-Metal Transition in Ferromagnetic Insulating BaFeO3 Thin Films. T. Tsuyama, S. Chakraverty, S. Macke, N. Pontius, C. Schüßler-Langeheine, H. Y. Hwang, Y. Tokura, and H. Wadati
Phys. Rev. Lett. 116, 256402

doi: 10.1103/PhysRevLett.116.256402

red/arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.  

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.