Sandwiches aus Metalloxiden: Wie sich Eigenschaften der Grenzflächen manipulieren lassen

Die Skizze zeigt den Aufbau der beiden Metalloxidschichten. Die interessanten neuen Eigenschaften zeigen sich genau an der Grenzfläche.

Die Skizze zeigt den Aufbau der beiden Metalloxidschichten. Die interessanten neuen Eigenschaften zeigen sich genau an der Grenzfläche. © M.Bibes

Eine französisch-deutsche Kooperation hat ein Schichtsystem aus Übergangsmetalloxiden an BESSY II untersucht. Dabei entdeckten die Wissenschaftler eine neue Möglichkeit, um Eigenschaften der Grenzfläche gezielt zu verändern, zum Beispiel den Ladungstransfer oder die magnetischen Eigenschaften. Möglicherweise könnte man damit sogar neue Formen der Hochtemperatur-Supraleitung erzeugen.

So genannte Sandwich-Systeme aus dünnen Schichten von Übergangsmetalloxiden zeigen oft überraschende Eigenschaften an den Grenzflächen. Das Paradebeispiel ist eine Doppelschicht aus Lanthan-Aluminat (LaAlO3) und Strontium-Titanat (SrTiO3): während die beiden Oxid-Schichten im Inneren des Materials elektrisch isolierend und unmagnetisch sind, beobachtet man an der Grenzfläche der beiden Schichten Ferromagnetismus, hohe Leitfähigkeit und unter bestimmten Bedingungen sogar Supraleitung.

Nun hat ein Team um Manuel Bibes vom CNRS in Thales, Frankreich, gemeinsam mit internationalen Partnern einen neuen Ansatz gefunden, um die Eigenschaften von Grenzflächen gezielt zu steuern. Zusammen mit Sergio Valencia und weiteren Wissenschaftlern vom HZB konzipierten sie eine Versuchsreihe an BESSY II, mit der sie nun aufsehenerregende Ergebnisse erzielt haben.

Selten-Erd-Elemente verändern den Ladungstransfer  

Das Team um Manuel Bibes stellte dafür zunächst Doppelschichten aus extrem dünnen Metalloxid-Filmen her, einen Gadolinium-Titanat (GdTiO3)-Film und einen „R“-Nickelat (RNiO3)-Film, wobei „R“ ein Element aus der Gruppe der Seltenen Erden ist. „Es ist uns damit gelungen, zwei sehr unterschiedliche Übergangsmetalloxide zu kombinieren: Während in der chemischen Bindung der Titanat-Schicht die Elektronen stark lokalisiert sind, sind sie in der Nickelat-Schicht zwischen den Sauerstoff- und Nickelatomen verteilt (kovalente Bindung)“, erklärt Manuel Bibes. An der Grenzfläche wandern daher einige Ladungsträger aus der Titanat- in die Nickelat-Schicht. Diesen Prozess untersuchten die Wissenschaftler nun anhand von Proben mit unterschiedlichen Selten-Erd-Elementen: Lanthan, Neodym und Samarium.

An BESSY II konnten sie nun erstmals beobachten, dass der Ladungstransfer zwischen den beiden Schichten vom Selten-Erd-Element in der Nickelat-Schicht abhängt. Die unterschiedlichen Selten-Erd-Elemente besitzen verschiedene Atomradien. Dies beeinflusst die Wechselwirkungen zwischen den Nickel- und Sauerstoff-Atomen und damit auch die so genannte „Kovalenz“ und ihren Anteil an der chemischen Bindung. Dies ist soweit bekannt; aber die Wissenschaftler konnten nun erstmals beobachten, dass sich die Stärke der Kovalenz wiederum auf den Ladungstransfer von der Titanat- in die Nickelat-Schicht auswirkt. „Das ist das wichtigste Ergebnis“, sagt Valencia. „Wir haben damit entdeckt, wie wir die chemische Bindung beeinflussen können, um den Ladungstransfer zu steuern.“


Ferromagnetismus beobachtet, Supraleitung erhofft

Über diesen Mechanismus könnte man beeinflussen, wie sich neue Phasen an den Grenzflächen ausbilden, zum Beispiel der Ferromagnetismus, der in dem jetzigen Experiment beobachtet wurde. „Vielleicht können wir so auch unkonventionelle Supraleitung finden, die man in Analogie zu Kupraten auch in solchen Nickelat-Heterostrukturen vermutet “, hofft Valencia. “Wir hoffen, dass diese Arbeit dazu beitragen wird, bessere Grenzflächen zu entwickeln, an denen neue aufregende Phasen der Materie gezielt erzeugt und untersucht werden können“, sagt Manuel Bibes.


Zur Publikation in Nature Physics: doi:10.1038/nphys3627

'Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces'. M. N. Grisolia, J. Varignon, G. Sanchez-Santolino, A. Arora, S. Valencia, M. Varela, R. Abrudan, E.Weschke, E. Schierle, J. E. Rault, J.-P. Rueff, A. Barthélémy, J. Santamaria and M. Bibes

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.
  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.