Wettlauf der Solarstrom-Technologien: Dünnschicht-Photovoltaik holt auf

Flexible CIGS-Module.

Flexible CIGS-Module. © ZSW

Gebäudeintegrierte CIGS-Dünnschichtphotovoltaik mit 500 Quadratmetern Modulfläche.

Gebäudeintegrierte CIGS-Dünnschichtphotovoltaik mit 500 Quadratmetern Modulfläche. © Manz AG

ZSW und HZB legen aktuelle Daten vor – neue Chancen für die EU-Solarindustrie

Der überwiegende Teil der Photovoltaikanlagen weltweit ist mit Solarzellen aus kristallinem Silizium bestückt. Dank großer Fortschritte in der CIGS-Dünnschichttechnologie könnte sich dies künftig ändern. Zu diesem Schluss kommt eine Untersuchung, die das Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) und das Helmholtz-Zentrum Berlin (HZB) zusammen mit internationalen Experten aus Forschung und Industrie durchgeführt haben. Für die Solarindustrie in Europa eröffnen sich dadurch große Chancen, so die Partner in einem auf www.cigs-pv.net veröffentlichten „White Paper“.

Die CIGS-Dünnschichttechnologie ist die am weitesten entwickelte Siliziumalternative und wird derzeit immer preiswerter. Sie liefert zudem höhere Erträge unter Schwachlicht und Schatten und ermöglicht optisch ansprechende Einsatzoptionen.

Die Zahlen sind beeindruckend: Im Jahr 2015 wurden weltweit 52 Gigawatt Solarstromleistung neu installiert – ein neuer Rekord. Insgesamt beträgt die global installierte Leistung mindestens 220 Gigawatt. Die jährliche Nachfrage soll in den nächsten Jahren auf über 100 Gigawatt steigen, die Überkapazitäten schwinden. Das macht bald neue Solarfabriken nötig.

Wirkungsgrad und Kosten nähern sich der Silizium-PV an

Der Platzhirsch unter den Photovoltaiktechnologien mit einem überragenden Marktanteil von über 90 Prozent ist immer noch die kristalline Silizium-PV. Die Fortschritte der Dünnschicht-Photovoltaik auf Basis von Kupfer-Indium-Gallium-Diselenid (CIGS) lassen aber aufhorchen. Nach dem Eintritt in die Massenproduktion im Gigawattmaßstab inklusive schlüsselfertiger Produktionsanlagen purzeln aktuell die Rekorde.

Während multikristalline Siliziumzellen heute Wirkungsgrade von 21,3 Prozent erreichen, kommen CIGS-Solarzellen inzwischen schon auf 22,3 Prozent. Bei den Modul-Wirkungsgraden ist die Silizium-PV nur noch geringfügig besser, die beiden Technologien liegen mit 15 bis 17 Prozent Effizienz nah beieinander. Die Produktionskosten der CIGS-Module sind mittlerweile sogar auf das Niveau der Siliziumtechnologie gesunken – 40 US-Cent pro Watt.

Da die Produktionskapazitäten der recht jungen Dünnschicht-PV noch nicht so groß sind wie bei ihrer Konkurrenz, sind nach einem Ausbau deutlich bessere Werte möglich. Wirkungsgrade von 18 Prozent und mehr sowie Kosten von rund 25 US-Cent pro Watt sind laut ZSW
und HZB bei CIGS-PV-Fabriken mit einer jährlichen Kapazität von 500 bis 1.000 Megawatt erreichbar. Die konkurrenzfähigen Kosten stellen sich, anders als bei der Silizium-PV, bereits bei einem vergleichsweise geringen Produktionsvolumen ein. Für Investoren bedeutet das deutlich niedrigere Einstiegsinvestitionen.

Konkurrenz für multikristalline Silizium-Module wird stärker

Die Dünnschicht-Technologie besitzt darüber hinaus technische Vorteile: Die Module sind leichter und liefern höhere Erträge unter Schwachlichtbedingungen. Der geringere Energie- und Materialverbrauch bei der Herstellung hat kürzere Energierücklaufzeiten zur Folge – es muss weniger Energie aufgewendet werden, um die Module herzustellen. Auch die höhere Schattentoleranz ist ein Pluspunkt für Anlagenbesitzer. Da die Module homogen erscheinen, lassen sie sich optisch attraktiv in Hausdächer oder Fassaden integrieren. Auch flexible Varianten, die mit der hohen CIGS-Effizienz punkten können, werden entwickelt.

„Solarstrommodule auf Basis von Silizium werden noch eine Weile den übergroßen Marktanteil besitzen“, sagt ZSW-Vorstand Prof. Dr. Michael Powalla. „Die Chancen für die CIGS-Dünnschichtphotovoltaik sind jüngst aber wieder gestiegen.“ Gerade für Modulhersteller und den Anlagen- und Maschinenbau in Deutschland und Europa sei das jetzt eine Chance.

Die neuen Informationen haben Michael Powalla und sein Kollege Prof. Dr. Rutger Schlatmann vom HZB zusammen mit 25 weiteren Experten aus aller Welt zusammengetragen und in einem White Paper veröffentlicht: Das vier Seiten umfassende Dokument steht in englischer Sprache unter www.cigs-pv.net als Download zur Verfügung.

ZSW/HZB

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.
  • Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    Nachricht
    24.10.2024
    Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    ETIP PV ist ein Fach-Gremium, das die Europäische Kommission zu Photovoltaik berät. Nun hat der ETIP PV-Lenkungsausschuss einen neuen Vorsitzenden sowie zwei stellvertretende Vorsitzende für die Amtszeit 2024–2026 gewählt. Rutger Schlatmann, Bereichssprecher Solare Energie am HZB und Professor an der HTW Berlin, wurde als Vorsitzender wiedergewählt.