Optimale Bandlücke für hybride Tandem-Solarzelle aus Silizium und Perowskit

Schema des Aufbaus der Tandem-Zelle.

Schema des Aufbaus der Tandem-Zelle. © H. Cords/HZB

Tandemsolarzellen aus Silizium und Perowskit gelten als Hoffnungsträger für zukünftige hocheffiziente Solarmodule. Ein Team um den Perowskit-Pionier Henry Snaith, Universität Oxford, hat nun mit Bernd Rech und Lars Korte vom Helmholtz-Zentrum Berlin gezeigt, dass Wirkungsgrade von bis zu 30 Prozent für eine Perowskit-Silizium-Tandemzelle erreichbar sind. Sie haben dafür die chemische Zusammensetzung der Perowskit-Schicht systematisch variiert und so eine Bandlücke von 1,75 Elektronenvolt realisiert, die für die Energieumwandlung optimal ist. Ihre Arbeit ist nun in „Science“ publiziert.

Tandem-Solarzellen kombinieren unterschiedliche Solarzellen, um höhere Wirkungsgrade zu erzielen. Dabei ist die Kombination von Perowskit mit Silizium besonders interessant: Denn Perowskit wandelt Licht im sichtbaren Bereich in elektrische Energie um, während Silizium das Licht im nahinfraroten und infraroten Bereich nutzen kann (siehe auch IInfo vom 28. Oktober 2015). In Standard-Perowskit ist allerdings die so genannte Bandlücke mit ca. 1,6 Elektronenvolt noch etwas zu niedrig, um das Sonnenlicht optimal umzuwandeln.

Nun hat eine Kooperation zwischen dem Perowskit-Pionier Prof. Henry Snaith, University of Oxford, und den Silizium-Experten Prof. Bernd Rech und Dr. Lars Korte vom HZB-Institut für Siliziumphotovoltaik gezeigt, dass ein Wirkungsgrad von 30 % realistisch erreichbar scheint: Dafür haben sie gemeinsam eine Silizium-Perowskit-Tandemzelle konzipiert, bei der die beiden Zellen mechanisch aufeinander gestapelt und separat kontaktiert sind.

Das HZB-Team hat die Silizium-Zelle hergestellt, die die untere der beiden Zellen im Tandem bildet. Dem Team in Oxford gelang es, die Bandlücke des Perowskits auf 1,75 eV zu erhöhen, indem sie die chemische Zusammensetzung der Perowskit-Schicht systematisch variierten. Gleichzeitig konnten sie dadurch auch die chemische und thermische Stabilität der empfindlichen Perowskit-Schicht deutlich steigern. 

Science 8 January 2016: Vol. 351 no. 6269 pp. 151-155

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells

DOI:10.1126/science.aad5845

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Mehr Zeit für den Austausch
    Interview
    12.05.2025
    Mehr Zeit für den Austausch
    Der südafrikanische Chemiker Denzil Moodley ist der erste Industrial Research Fellow am HZB. Er ist federführend am Projekt CARE-O-SENE beteiligt. Der Weg zu einem effizienten Katalysator für einen nachhaltigen Flugzeug-Treibstoff soll durch das Fellowship-Programm weiter beschleunigt werden. Im Interview berichtet er über das Projekt und darüber, warum es so entscheidend ist, dass Forschende aus Industrie und öffentlicher Forschung zusammen arbeiten.

  • Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.