Alternative Methode, um Mikrostrukturen in Polykristallen darzustellen

Wie sich die Kristallite in einer CuInSe<sub>2</sub>-D&uuml;nnschicht orientieren, l&auml;sst sich auch mit Raman-Mikrospektroskopie kartieren.

Wie sich die Kristallite in einer CuInSe2-Dünnschicht orientieren, lässt sich auch mit Raman-Mikrospektroskopie kartieren. © HZB

Der gleiche Ausschnitt dieser Probe mit EBSD kartiert.

Der gleiche Ausschnitt dieser Probe mit EBSD kartiert. © HZB

Auch mit Raman-Mikrospektroskopie  lässt sich ermitteln, wie Kristallorientierungen in polykristallinen Materialien über größere Bereiche verteilt sind. Dieses Verfahren kann als Alternative zur Rückstreuelektronenbeugung im Rasterelektronenmikroskop herangezogen werden. Dass beide Verfahren auf Flächen von mehreren hundert Quadratmikrometern zu vergleichbaren Ergebnissen führen, hat nun ein Team aus dem Helmholtz-Zentrum Berlin und der Bundesanstalt für Materialforschung (BAM) demonstriert.

Die meisten festen Materialien liegen als Polykristalle vor. Wie sich diese Mikrokristalle in der Probe orientieren, kann für die Eigenschaften des Materials sehr wichtig sein. Um die Orientierungsverteilung über einen größeren Probenausschnitt zu bestimmen, ist in der Regel ein Rasterelektronenmikroskop erforderlich. Nach aufwändiger Vorbehandlung wird die Probe im Vakuum mit einem Elektronenstrahl abgetastet und mittels Rückstreuelektronenbeugung (electron backscatter diffraction, kurz EBSD) untersucht.

Alternative Methode: weniger Aufwand

Nun hat ein Team aus dem HZB um Dr. Daniel Abou-Ras zusammen mit Dr. Thomas Schmid von der BAM gezeigt, dass vergleichbare Verteilungsbilder auch mit Raman-Mikrospektroskopie gelingen. Diese Methode erfordert  lediglich einen optischen Mikroskopieaufbau, benötigt keine aufwändige Probenpräparation und kann auch auf Materialsysteme angewandt werden, die nicht vakuumtauglich sind.

Großer Ausschnitt untersucht

Als Modellsystem untersuchten die Wissenschaftler eine polykristalline CuInSe2-Dünnschicht mit beiden Methoden. Dabei konnten sie zeigen, dass die experimentell ermittelten Raman-Intensitäten über einem ausgewählten Flächenausschnitt sehr gut mit den - unter Verwendung der lokalen Orientierungen - aus der EBSD-Map berechneten Raman-Intensitäten übereinstimmten. „Die Probe wurde mit Schrittweiten von 200 Nanometern mit einem Laserstrahl abgetastet und die Raman-Signale gemessen. Um diese Messung auf Flächen von mehreren hundert Quadratmikrometern durchzuführen, mussten wir allerdings die Probenumgebung sehr sorgfältig kontrollieren und über Stunden stabil halten“, erklärt Abou-Ras.

Anwendbar für viele polykristalline Proben

Die Anwendung der Raman-Mikrospektroskopie für Orientierungsverteilungen ist prinzipiell für alle polykristallinen Proben möglich, ob anorganisch oder organisch, solange diese Raman-aktiv sind.

Die Arbeit ist nun in Scientific Reports veröffentlicht:
Orientation-distribution mapping of polycrystalline materials by Raman microspectroscopy, Norbert Schäfer, Sergiu Levcenco, Daniel Abou-Ras, Thomas Schmid Doi: 10.1038/srep18410
 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    Nachricht
    24.10.2024
    Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    ETIP PV ist ein Fach-Gremium, das die Europäische Kommission zu Photovoltaik berät. Nun hat der ETIP PV-Lenkungsausschuss einen neuen Vorsitzenden sowie zwei stellvertretende Vorsitzende für die Amtszeit 2024–2026 gewählt. Rutger Schlatmann, Bereichssprecher Solare Energie am HZB und Professor an der HTW Berlin, wurde als Vorsitzender wiedergewählt.