Erstmals experimentell nachgewiesen: Wie Nanoteilchen ultradünne CIGSe-Solarzellen effizienter machen

Die SiO<sub>2</sub>-Nanoteilchen (schwarz) wurden direkt auf das Molybd&auml;n-Substrat (lila) aufgedruckt, das als R&uuml;ckkontakt dient. Die CIGSe-Schicht (rot) sowie weitere funktionale Schichten wurden auf das Nanomuster aufgewachsen. Weil diese Schichten extrem d&uuml;nn sind, dr&uuml;ckt sich das Muster der Nanoteilchen erkennbar bis zur oberen Schicht durch. Bild. G.Yin/HZB

Die SiO2-Nanoteilchen (schwarz) wurden direkt auf das Molybdän-Substrat (lila) aufgedruckt, das als Rückkontakt dient. Die CIGSe-Schicht (rot) sowie weitere funktionale Schichten wurden auf das Nanomuster aufgewachsen. Weil diese Schichten extrem dünn sind, drückt sich das Muster der Nanoteilchen erkennbar bis zur oberen Schicht durch. Bild. G.Yin/HZB © G.Yin / HZB

CIGSe-Solarzellen sind aus Kupfer, Indium, Gallium und Selen aufgebaut und können hohe Wirkungsgrade erreichen. Um wertvolles Indium einzusparen, soll die CIGSe-Schicht jedoch so dünn wie möglich sein. Dadurch sinkt allerdings der Wirkungsgrad sehr stark. Nun hat es ein Team am Helmholtz-Zentrum Berlin (HZB) geschafft, ultradünne CIGSe-Schichten von hoher Qualität herzustellen und mit winzigen Nanoteilchen auf der Rückseite der Zelle den Wirkungsgrad zu steigern.

CIGSe-Solarzellen erreichen hohe Wirkungsgrade und sind als Solarmodule mit Schichtdicken von einigen Mikrometern bereits kommerziell erhältlich. Doch Indium zählt zu den seltenen und teuren Elementen, so dass die Absorberschichten in Zukunft deutlich dünner werden sollten. Dies verringert jedoch den Wirkungsgrad, weil dünnere Schichten weniger Licht absorbieren. Doch nicht nur das: unterhalb von einem Mikrometer Dicke tritt ein weiteres Problem auf - die Ladungsträger treffen häufiger aufeinander und rekombinieren am Rückkontakt, so dass sie für die Stromerzeugung „verloren“ gehen.

Ultradünne CIGSe mit Wirkungsgraden von 11,1 %

„Es dauerte mehr als ein Jahr, bis es mir gelang, ultradünne CIGSe-Schichten von nur 0,46 Mikrometern  (460 Nanometer) herzustellen, die noch akzeptable Wirkungsgrade von bis zu 11,1% erreichen“, sagt Guanchao Yin, der seine Doktorarbeit im Team von Martina Schmid gerade mit Auszeichnung abgeschlossen hat. Um den Wirkungsgrad der ultradünnen CIGSe-Zellen weiter zu steigern, sollten dann Anordnungen von Nanoteilchen eingefügt werden. Martina Schmid konnte dafür auf ihre guten Kontakte zur Arbeitsgruppe von Prof. Albert Polman am Center for Nanooptics, Amsterdam zurückgreifen; Diese Gruppe zählt zu den Pionieren auf dem Gebiet der Nanophotonik und ist in der Lage, beliebige Anordnungen von Nanoteilchen mit spezialisierten Nanodruck-Technologien zu produzieren.

Nanoteilchen auf der Vorderseite sind wenig effektiv

Im ersten Schritt brachten die Kollegen aus Amsterdam ein Muster aus dielektrischen TiO2-Nanoteilchen oben auf der ultradünnen Solarzelle auf. Die Nanoteilchen sollten wie Lichtfallen wirken und das Licht in die CIGSe-Schicht weiterleiten. Dennoch wirkte sich dies weitaus weniger positiv auf den Wirkungsgrad aus als beispielsweise bei Siliziumbasierten Solarzellen. Yin stellte daher weitere Versuche an und fand schließlich heraus, was am besten funktionierte: Nanoteilchen hinter der Absorberschicht, direkt auf dem Rückkontakt!

Auf der Rückseite dagegen umso mehr: Der Wirkungsgrad steigt auf 12,3 %

Die Amsterdamer Kollegen stellten dafür eine Anordnung von dielektrischen SiO2 Nanoteilchen direkt auf dem Rückkontakt der Zelle her, einem Molybdän-Substrat. Auf dem so strukturierten Substrat wuchsen Yin und die Kollegen am HZB eine ultradünne CIGSe-Schicht, ebenso wie alle weiteren Schichten, die für die Solarzelle nötig sind. Dadurch stieg der Wirkungsgrad von 11,1%  auf  12,3% ! Gleichzeitig nahm die Kurzschluss-Stromdichte der ultradünnen CIGSe-Zelle um mehr als 2 mA/cm2 zu. Mit zusätzlichen Antireflektions-Nanoteilchen auf der Vorderseite ließ sich der Wirkungsgrad sogar auf bis zu 13,1% steigern.

Nanoteilchen streuen das Licht in die aktive Schicht und verhindern die Rekombination

“Die Nanoteilchen auf der Rückseite fangen das Licht und streuen es effizient zurück in die aktive CIGSe-Schicht, deren Absorption dadurch erhöht wird”, erklärt Yin. Weitere Untersuchungen deuten darauf hin, dass die SiO2-Nanoteilchen auf der Rückseite der Zelle außerdem die Rekombination von Ladungsträgern einschränken, was ebenfalls zur Steigerung des Wirkungsgrads beiträgt. “Diese Arbeit zeigt erstmals experimentell, wie sich durch Nanoteilchen auch bei ultradünnen CIGSe-Solarzellen die Effizienz steigern lässt. Dies hat uns auf weitere Ideen gebracht, wie wir zusätzlich zu den optischen auch die elektrischen Eigenschaften von Nanoteilchen nutzen können, um die Absorption von Licht zu erhöhen und den Verlust von Ladungsträgern zu begrenzen“, sagt Martina Schmid.


Zur Publikation:

M.-C. van Lare*, G. Yin*, A. Polman, M. Schmid “Light coupling and trapping in ultra-thin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns” ACS Nano

DOI: 10.1021/acsnano.5b04091 (2015), *equal contribution

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Nachricht
    26.03.2025
    Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Samira Jama Aden, Architektin in der Beratungstelle für bauwerkintegrierte Photovoltaik (BAIP), ist der Arbeitsgruppe “Environmental, Social and Governance (ESG)” der ETIP PV - The European Technology & Innovation Platform for Photovoltaics beigetreten.