Katalyseforschung verstärkt: Helmholtz-Zentrum Berlin ist am neu bewilligten Einstein-Zentrum für Katalyse beteiligt

Am HZB werden neue Methoden entwickelt, um die elektronische Struktur von katalytisch aktiven Molek&uuml;len zu untersuchen. </p>
<p>

Am HZB werden neue Methoden entwickelt, um die elektronische Struktur von katalytisch aktiven Molekülen zu untersuchen.

© HZB

Die Einstein-Stiftung fördert ab 2016 ein neues Einstein-Zentrum für Katalyse (EC²), an dem sich die Technische Universität Berlin (TU Berlin) und mehrere außeruniversitäre Einrichtungen aus Berlin beteiligen. Aus dem Helmholtz-Zentrum Berlin (HZB) wirkt Prof. Dr. Emad Aziz, Leiter des HZB-Instituts für Methoden der Materialforschung, am Aufbau der Einrichtung mit. Sein Team bringt insbesondere Expertise in der Analytik ultraschneller Prozesse bei katalytischen Reaktionen ein.

Katalyse ist zentrales Zukunftsthema, ob bei der Energiewende oder bei der Verarbeitung von Rohstoffen: Wenn wir in Zukunft Ressourcen effizienter und nachhaltiger nutzen wollen, sind hervorragende Katalysatoren unverzichtbar. Deshalb verstärkt auch das HZB die Katalyseforschung und arbeitet dabei gezielt mit Kooperationspartnern zusammen.

Im Einstein-Zentrum für Katalyse (EC²) sollen Methoden entwickelt werden, die einen tieferen Einblick in chemische und biologische Katalysatoren ermöglichen. Insbesondere die Dynamik von Katalyseprozessen will man damit besser verstehen. „Der Aufbau des institutionenübergreifenden Einstein-Zentrums für Katalyse ist ein echter Meilenstein für die Katalyseforschung in Berlin. Das HZB wird sich zukünftig noch stärker im Rahmen der Forschung an Energiematerialien in der Katalyseforschung engagieren“, sagt die wissenschaftliche Geschäftsführerin des HZB, Prof. Dr. Anke Kaysser-Pyzalla.

Das neue Einstein-Zentrum baut auf dem Exzellenzcluster  der TU Berlin „Unifying Concepts in Catalysis (UniCat)“ auf. Zentrale Partner des neuen Einstein-Zentrums sind neben dem HZB das Fritz-Haber-Institut der Max-Planck-Gesellschaft, das Leibniz-Institut für Molekulare Pharmakologie Berlin, das Leibniz-Institut für Analytische Wissenschaften Berlin, sowie das UniCat-BASF Joint Lab. Sprecher des neuen Einstein-Zentrums ist Prof. Dr. Matthias Drieß vom Fachgebiet Metallorganische Chemie und Anorganische Materialien der TU Berlin. „Um die Dynamik von aktiven Reaktionszentren mit hoher zeitlicher wie räumlicher Auflösung bestimmen zu können, brauchen wir das HZB mit seiner Spitzenanalytik an BESSY II als Partner“, sagt Drieß.

Das HZB-Institut für Methoden der Materialentwicklung entwickelt neue experimentelle Methoden, die Licht im Röntgenbereich oder im extremen UV-Bereich nutzen. „Damit stellen wir neue Werkzeuge bereit, um die elektronische Struktur von katalytischen Molekülen und die ultraschnellen Prozesse, die während der Katalyse ablaufen, unter realistischen Bedingungen wie Raumtemperatur oder Normaldruck zu untersuchen“, erklärt Aziz. „Auch Dr. Tristan Petit und Dr. Annika Bande, deren Gruppen durch ein Freigeist-Stipendium der Volkswagenstiftung gefördert werden, profitieren von dem großen Netzwerk zur Katalyseforschung in Berlin.“


Das neue Einstein-Zentrum soll ab Januar 2016 für zunächst fünf Jahre gefördert werden.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Durchbruch: Erster Elektronenstrahl im SEALab bringt Beschleunigerphysik voran
    Nachricht
    03.04.2025
    Durchbruch: Erster Elektronenstrahl im SEALab bringt Beschleunigerphysik voran
    Weltweit zum ersten Mal hat das SEALab-Team am HZB in einem supraleitenden Hochfrequenzbeschleuniger (SRF Photoinjektor) einen Elektronenstrahl aus einer Multi-Alkali-Photokathode (Na-K-Sb) erzeugt und auf relativistische Energien beschleunigt. Dies ist ein echter Durchbruch und eröffnet neue Optionen für die Beschleunigerphysik.

     

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.