Ultradünne Wasserfilme zum Fließen gebracht - Ein Flachstrahl für Röntgenspektroskopie
Flachstrahlsystem für Flüssigkeiten mit den beiden Düsen, den beiden kollidierenden laminaren Flüssigkeitsstrahlen und dem blattförmigen Wasserfilm. © MBI
Teams des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), des HZB und des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) haben ein neuartiges Flachstrahlsystem für Transmissionsmessungen flüssiger Proben im weichen Röntgenbereich entwickelt. Dies bedeutet einen wichtigen Fortschritt für die Spektroskopie flüssiger Proben mit weicher Röntgenstrahlung und ebnet den Weg für neuartige stationäre und zeitaufgelöste Experimente.
Dabei wurde ein Phänomen aus der Fluiddynamik ausgenutzt: Wenn sich zwei identische laminare Flüssigkeitsstrahlen unter einem wohldefinierten Winkel treffen, breitet sich die Flüssigkeit radial aus, was zur Ausbildung eines dünnen blattförmigen Flüssigkeitsfilm senkrecht zur Ebene der beiden Strahlen führt. Dieser Film wird durch eine ebenfalls aus der Flüssigkeit gebildeten Randlippe stabilisiert.
Die Innovation besteht hier darin, dass ein über Stunden stabiler Flachstrahl im Vakuum (bei Drücken kleiner als 10-3 mbar) mit einer Dicke von einem bis zwei Mikrometer realisiert wurde. Erstmalig konnten damit Absorptionsspektren flüssiger Proben in Transmission mit Photonenenergien im Weichröntgenbereich und völlig ohne Membran-basierte Fenster gemessen werden.
Die röntgenspektroskopischen Messungen wurden an BESSYII des HZB durchgeführt.
Lesen Sie hier den kompletten Text aus dem MBI.
Originalpublikation: Structural Dynamics 2, 054301 (2015): A liquid flatjet system for solution phase soft-x-ray spectroscopy
Maria Ekimova, Wilson Quevedo, Manfred Faubel, Philippe Wernet, Erik T.J. Nibbering
Max-Born-Institut/red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14315;sprache=dehttp://
- Link kopieren
-
Elektrokatalyse mit doppeltem Nutzen – ein Überblick
Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
-
BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
-
Was vibrierende Moleküle über die Zellbiologie verraten
Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.