Kristallstruktur und Magnetismus – neuer Einblick in die Grundlagen der Festkörperphysik

Mit einem verbesserten Verfahren konnten diese Proben mit exakt definierten Anteilen aus Nickel und Kupfer hergestellt werden. Foto: M. Tovar/HZB

Mit einem verbesserten Verfahren konnten diese Proben mit exakt definierten Anteilen aus Nickel und Kupfer hergestellt werden. Foto: M. Tovar/HZB

Durch den Jahn-Teller-Effekt sind Tetraeder mit einem Nickel-Atom im Zentrum etwas gestreckt (grün), während die Tetraeder mit einem Kupfer-Atom im Zentrum gestaucht sind (blau).

Durch den Jahn-Teller-Effekt sind Tetraeder mit einem Nickel-Atom im Zentrum etwas gestreckt (grün), während die Tetraeder mit einem Kupfer-Atom im Zentrum gestaucht sind (blau). © M. Tovar/HZB

Nur in der orthorhombischen Phase (hellblau), die bei den meisten Mischkristallen tief unterhalb der Raumtemperatur (293 K) liegt, treten magnetische Phasen auf. Dabei konnten die HZB-Forscher zwei magnetische Phasen identifizieren (schwarze und blaue Messpunkte). Bei einem Kupferanteil um 15 % bleibt die orthorhombische Phase jedoch bis deutlich über der Raumtemperatur stabil (Ts2).

Nur in der orthorhombischen Phase (hellblau), die bei den meisten Mischkristallen tief unterhalb der Raumtemperatur (293 K) liegt, treten magnetische Phasen auf. Dabei konnten die HZB-Forscher zwei magnetische Phasen identifizieren (schwarze und blaue Messpunkte). Bei einem Kupferanteil um 15 % bleibt die orthorhombische Phase jedoch bis deutlich über der Raumtemperatur stabil (Ts2). © Reehuis/HZB

HZB-Team entschlüsselt Zusammenhang zwischen magnetischen Wechselwirkungen und Verzerrungen der Kristallstruktur in einem geometrisch „frustrierten“ Spinell-System

Ein Team am HZB hat erstmals im Detail untersucht, wie sich in kristallinen Proben mit Spinellstruktur magnetische und geometrische Ordnungen gegenseitig beeinflussen. Die Gruppe hatte dazu eine Reihe von Mischkristallen mit der Summenformel Ni1-xCuxCr2O4 synthetisiert, in denen das Element Nickel sukzessive durch Kupfer ersetzt wurde. Mit Neutronenstreuexperimenten am BER II deckten sie auf, wie sich dadurch nicht nur die  Kristallstruktur verändert, sondern auch neue magnetische Phasen auftreten. Die Ergebnisse sind in Physical Review B erschienen.

Spinelle bestehen aus dicht gepackten, hochsymmetrischen Ebenen von Sauerstoffatomen (etwa wie eine dicht gepackte Murmelkiste), in deren Zwischenräumen unterschiedliche metallische Elemente eingelagert sind. Dadurch entsteht eine große Bandbreite von Verbindungen, die in der Rohstoffindustrie und als feuerfeste und magnetische Werkstoffe zum Einsatz kommen. Im Spinellsystem Ni1-xCuxCr2O4 verursachen die eingelagerten Metallionen eine Verzerrung der Kristallstruktur und weisen zusätzlich magnetische Momente auf, die sich strukturbedingt nicht beliebig ausrichten können. So kommt es, abhängig von der Temperatur, zu spektakulären neuen Ordnungen. Ein HZB-Team hat nun dieses Chrom-Spinell-System umfassend analysiert und erstmals fundamentale Erklärungen für das komplexe Phasendiagramm gefunden.

Herstellung der Mischkristalle

Um hochreine Proben mit exakt definierten Anteilen von Nickel und Kupfer herzustellen, musste Michael Tovar zunächst die Präparationstechnik erheblich verbessern. Die Reihe beginnt mit Proben aus reinem Nickel-Chrom-Spinell (x=0; grünes Pulver) und setzt sich über Proben mit zunehmendem Kupfer-Anteil fort. Dabei werden die Proben immer dunkler. Am Ende ist der Kupfer-Anteil bei 100 %, das Pulver ist schwarz. Die Pulver bestehen aus kleinen Kristallkörnern mit Durchmessern zwischen 30 und 50 Mikrometern. Das spannende an dieser Mischkristallreihe: Die Nickel- oder Kupfer-Atome sitzen auf so genannten Tetraeder-Plätzen der Kristallstruktur. Aufgrund ihrer unterschiedlichen Elektronenkonfiguration sind diese Tetraeder bei Nickel entlang der kristallographischen c-Achse gestreckt, bei Kupfer dagegen gestaucht (Jahn-Teller-Effekt). Über den Kupferanteil lässt sich somit die Verzerrung der Kristallstruktur steuern, was sich wiederum auf die magnetischen Ordnungen auswirkt.

Phasendiagramm zwischen 2 und 900 Kelvin

Mit Neutronenstreuexperimenten am Forschungsreaktor BER II gelang es Manfred Reehuis und Michael Tovar, die strukturellen und magnetischen Eigenschaften in jeder Mischkristallprobe zu ermitteln und zwar in einem weiten Temperaturbereich von nahe dem Nullpunkt der Temperaturskala bis über 900 Kelvin. Die beiden Wissenschaftler entdeckten neue magnetische Ordnungen und konnten erstmals ein vollständiges Phasendiagramm des Systems erstellen. Dabei ist bei hohen Temperaturen die Kristallstruktur kubisch (drei rechte Winkel, drei gleiche Kantenlängen), da die Bewegungsenergie der Atome den Jahn-Teller-Effekt noch unterdrückt, magnetische Ordnungen können sich nicht etablieren. Bei sinkender Temperatur setzt der Jahn-Teller-Effekt ein, der die Kristallsymmetrie erniedrigt: zunächst tetragonal (drei rechte Winkel, zwei gleiche Kantenlängen) und schließlich orthorhombisch (drei rechte Winkel, drei unterschiedliche Kantenlängen).

Neue magnetische Phasen

Das Interessante: Die magnetischen Phasen treten nur bei orthorhombischer Struktur auf, die sowohl beim reinen Nickel- als auch beim Kupfer-Spinell weit unterhalb der Raumtemperatur liegen. „Wir konnten erstmals die magnetischen Strukturen exakt bestimmen und damit nachweisen, dass es zwischen den magnetischen Ordnungszuständen und den kristallinen Strukturen einen Zusammenhang gibt. Dies war eine Frage, die Physiker seit mehr als 50 Jahren beschäftigt hat“, erklärt Manfred Reehuis.

Orthorhombische "Insel"

Bei einem Mischungsverhältnis von 85% Nickel und 15% Kupfer weist das Spinellsystem eine Art orthorhombische „Insel“ im Phasendiagramm auf, bei der kurzzeitig der beobachtete Zusammenhang von Kristallsymmetrie und Magnetismus aufgebrochen wird. Die Ursache: Anders als bisher angenommen erfolgt die Verzerrung der Nickel- und Kupfertetraeder nicht in die gleiche Richtung, sondern 90° zueinander verdreht. Daher kommt es beim genannten Mischungsverhältnis nicht zu einem Ausgleich der Verzerrungen, sondern stattdessen zu einer maximalen Verzerrung der Struktur. „Atome sind eben keine Kugeln, sondern machen verrückte Sachen, insbesondere wenn sie nicht isoliert auftreten, sondern in einem geometrischen Verbund wie eben in einer Kristallstruktur“, sagt Michael Tovar.

Zur Publikation: Phys. Rev. B 91, 024407 ."Competing Jahn-Teller distortions and ferrimagnetic ordering in the geometrically frustrated system Ni1−xCuxCr2O4"
M. Reehuis, M. Tovar, D. M. Többens, P. Pattison, A. Hoser, and B. Lake
http://dx.doi.org/10.1103/PhysRevB.91.024407

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.