Von angeregten Atomen zur Funktionalität – ERC Advanced Grant für Alexander Föhlisch

Alexander Föhlisch leitet das HZB-Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung und ist Professor an der Universität Potsdam.

Alexander Föhlisch leitet das HZB-Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung und ist Professor an der Universität Potsdam. © HZB

Im EU-Forschungs- und Innovationsprogramm „Horizon 2020“ hat Alexander Föhlisch einen ERC Advanced Grant eingeworben. Der renommierte Physiker ist Professor am Institut für Physik und Astronomie der Universität Potsdam und leitet am Helmholtz-Zentrum Berlin das Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung. Mit dem ERC Advanced Grant erhält er für seine Arbeit an hochselektiven Nachweisverfahren mit Synchrotronlicht und Röntgenlasern insgesamt 2,5 Millionen Euro für fünf Jahre.

Der European Research Council (ERC) fördert mit den Advanced Grants unkonventionelle und wegbereitende Forschung und unterstützt herausragende Spitzenforscher. Derzeit führen Wissenschaftler der Universität Potsdam sechs weitere ERC Grants durch.

Das neue Forschungsprojekt trägt den Namen „Excited state Dynamics from Anti-Stokes and non-linear resonant inelastic X-ray scattering“ (EDAX). Alexander Föhlisch wird darin untersuchen, wie sich chemische Reaktionspfade und Phasenübergangsverhalten mit neuartigen röntgenspektroskopischen Verfahren sichtbar machen lassen. Sie dienen als Grundlage für eine effiziente Energiewandlung und zukünftige energieeffiziente Informationstechnologien.

Alexander Föhlisch studierte Physik an der Eberhard Karls Universität Tübingen und erhielt sein Diplom an der Universität Hamburg und den Master of Arts in Physics an der State University of New York at Stony Brook. Vor seiner Habilitation in Experimentalphysik an der Universität Hamburg promovierte er an der Universität Uppsala in Schweden, wo er an der Advanced Light Source des Lawrence Berkeley National Laboratory forschte. Als gemeinsam berufener Professor der Universität Potsdam und des Helmholtz-Zentrums Berlin bestimmt er die elektronische Struktur und ultraschnelle Dynamik atomarer Einheiten mit innovativen Röntgenmethoden. Grundlegende Eigenschaften von Materialien – wie Moleküldynamiken an Grenzflächen, Schaltprozesse an Festkörpern oder chemische Bindungsverhältnisse aktiver Zentren – können so bestimmt werden.

Uni Potsdam/HZB


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.