“Teufelstreppe” in einem Spin-Ventil-System

Der Durchmesser der hexagonalen Einkristalle aus SrCo<sub>6</sub>O<sub>11</sub> misst h&ouml;chstens 0,2 Millimeter.

Der Durchmesser der hexagonalen Einkristalle aus SrCo6O11 misst höchstens 0,2 Millimeter.

Die Probe zeigt Plateaus in der Magnetisierung die mit unterschiedlichen Spin-Anordnungen verbunden sind.

Die Probe zeigt Plateaus in der Magnetisierung die mit unterschiedlichen Spin-Anordnungen verbunden sind.

Ein Japanisch-Deutsches Team entdeckt in einem komplexen Kobaltoxid-Einkristall an BESSY II, wie sich die Spins stufenweise zu einer ungewöhnlichen Anordnung formieren. Dies könnte neue spintronische Bauelemente ermöglichen.

Materialien mit komplexen magnetischen Strukturen gelten als interessante Kandidaten für Anwendungen in der “Spintronik”, deren Ziel es ist, mit weitaus weniger Energieeinsatz Daten zu verarbeiten oder zu speichern. Ein bekanntes Beispiel ist das so genannte “Spin-Ventil“, bei dem die Stromstärke, die durch das Element durchgelassen wird, empfindlich von der Anordnung der magnetischen Spins abhängt. In künstlichen Schichtsystemen können diese Anordnungen durch äußere magnetische Felder kontrolliert werden, was zu dem Riesenmagnetowiderstand-Effekt (Giant Magnetoresistance oder GMR) führt, für den Albert Fert und Peter Grünberg 2007 den Nobelpreis für Physik erhielten.

Kobaltoxide: magnetisch höchst komplex

Während klassische GMR-Systeme aus metallischen Schichten bestehen, die künstlich übereinander gewachsen werden, bieten oxidische Materialien eine interessante Alternative: Denn hier können  sich Schichtstrukturen mit alternierenden magnetischen Konfigurationen intrinsisch einstellen,. So weisen Kobaltoxide komplexe magnetische Ordnungen auf, die sich mit steigendem Feld verändern und sich zum Beispiel als Plateaus in der Magnetisierungskurve zeigen.

Magnetische Strukturen kartiert

Ein japanisches Team um Professor Hiroki Wadati, Universität Tokio, hat nun die magnetischen Strukturen in SrCo6O11 am Hochfeld-Diffraktometer von BESSY II charakterisiert. Wie häufig bei der Synthese neuer Materialien, mussten sie mit winzigen Einkristallen arbeiten, die Durchmesser von gerade mal 0,2 Millimetern besaßen. Durch die extrem empfindliche Methode der resonanten Röntgenstreuung, eine Spezialität der Instrumentierung an der UE46_PGM1 Beamline von BESSY II, gelang es ihnen jedoch an diesen Proben, die mit bloßem Auge kaum sichtbar sind, eine hochinteressante Beobachtung zu machen. Sie entdeckten eine “Teufelstreppe” in der Spin-Anordnung. Dieses Phänomen tritt auf, wenn sich durch einen äußeren Parameter, hier ein magnetisches Feld, unzählig viele kommensurable Überstrukturen einstellen lassen.

Teufelstreppe eröffnet neue Optionen

Dies geht weit über ein einfaches Spinventil hinaus und könnte neue Anwendungen in der Spintronik ermöglichen. An der Forschungsarbeit, die nun in Physical Review Letters publiziert ist, war auch ein Team vom Institut für Festkörper- und Werkstoffforschung in Dresden und vom HZB beteiligt.

Publikation:  T. Matsuda, S. Partzsch, T. Tsuyama, E. Schierle, E. Weschke, J. Geck, T. Saito, S. Ishiwata, Y. Tokura, and H. Wadati, "Observation of a Devil’s Staircase in the Novel Spin-Valve System SrCo6O11", Physical Review Letters 114 (236403-1-5):
doi:10.1103/PhysRevLett.114.236403.


Eugen Weschke

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.