Große Wachstumschancen für CIGS-Solarzellen

CIGS-Solarzellen sind die leistungsstärksten Dünnschicht-Solarzellen und werden auch am PVcomB mit Industriepartnern gemeinsam weiter-entwickelt.

CIGS-Solarzellen sind die leistungsstärksten Dünnschicht-Solarzellen und werden auch am PVcomB mit Industriepartnern gemeinsam weiter-entwickelt. © A. Kubatzki/HZB

Über 90 Expertinnen und Experten aus Industrie und Forschung haben sich auf dem Workshop „IW CIGS-Tech“ getroffen, den das PVcomB in Berlin-Adlershof vom 29. Bis 30.4 organisiert hat. Bild. A. Kubatzki/HZB

Über 90 Expertinnen und Experten aus Industrie und Forschung haben sich auf dem Workshop „IW CIGS-Tech“ getroffen, den das PVcomB in Berlin-Adlershof vom 29. Bis 30.4 organisiert hat. Bild. A. Kubatzki/HZB © A. Kubatzki/HZB

CIGS-Solarzellen Workshop gibt Grund zu Optimismus: höhere Effizienz, vereinfachte Produktion

Über 90 Expertinnen und Experten aus Forschung und Industrie aus Europa, Asien und den USA tauschten sich über die neuesten Entwicklungen zu CIGS-Dünnschichtsolarzellen aus. Dabei berichteten sie über konkrete Ergebnisse und Erfolge: von neuen Rekordmodulen und vereinfachten Verfahren in der industriellen Herstellung bis zu einem vertieften wissenschaftlichen Verständnis der besten CIGS-Solarzellen. Der Workshop „IW-CIGSTech 6“ wurde vom PVcomB am HZB in Berlin-Adlershof organisiert und fand letzte Woche vom 29. zum 30. April zum inzwischen sechsten Mal statt.

CIGS-Dünnschichtsolarzellen bestehen aus den Elementen Kupfer, Indium, Gallium und Selen und sind die leistungsstärksten Dünnschicht-Solarzellen. Sie werden auch am PVcomB mit Industriepartnern gemeinsam weiterentwickelt. „Allein im letzten Jahr gab es bemerkenswerte Fortschritte in der CIGS-Technologie“, sagt Prof. Dr. Rutger Schlatmann, der das PVcomB leitet. Die Expertinnen und Experten berichteten auf dem Workshop über konkrete Ergebnisse und Erfolge in mehreren Bereichen:

•    Der Weltrekord für CIGS-Zellen wurde auf knapp 22 % gesteigert und könnte nach neuesten Erkenntnissen in den nächsten Jahren bis auf 25 % steigen.
•    Modul-Wirkungsgrade aus der Produktion liegen deutlich oberhalb von 16%.
•    Die Produktion von CIGS-Solarzellen wurde in Deutschland wieder aufgenommen und wird weltweit ausgebaut.

Sehr vielversprechend waren auch neue Ergebnisse aus dem Bereich der Nassprozessierung, zur Prozesskontrolle und zur Produktentwicklung. So sind mit CIGS-Technologien auch sehr spezielle Anwendungen möglich, zum Beispiel für sehr große Solaranlagen mit sehr geringen Stromgestehungskosten, aber auch besondere Designs mit biegsamen Modulen oder ästhetisch anspruchsvollen Lösungen. „Der Workshop zeigt, dass es eine leistungsstarke CIGS-Gemeinschaft gibt, in der Expertinnen und Experten aus den Materialwissenschaften eng mit der Industrieforschung zusammenarbeiten. Viele berichten nun über größere Fortschritte und wir sehen große Wachstumschancen für die CIGS-Solarzellentechnik“, fasst Schlatmann seinen Eindruck zusammen.

red/arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.