Rad mit dreifacher Schallgeschwindigkeit zur Pulsauswahl an BESSY II

Skizze des MHz-Lichtchoppers, der sich mit bis zu dreifacher Schallgeschwindigkeit dreht.

Skizze des MHz-Lichtchoppers, der sich mit bis zu dreifacher Schallgeschwindigkeit dreht. © K. Holldack/HZB

Um gezielt einen von 400 Röntgenblitzen an BESSY II herauszupicken, haben Teams aus dem Forschungszentrum Jülich, dem MPI für Mikrostrukturphysik Halle und dem HZB einen extrem rasch rotierenden MHz-Lichtchopper entwickelt – ein Kernstück des neuen gemeinsamen Labors Uppsala-Berlin zur Extraktion des Hybrid-Pulses aus der 200-Nanosekunden-Lücke im Füllmuster - und an einem BESSY II Strahlrohr eingebaut. „Das vielleicht schnellste Rad der Welt“ besitzt am Rand winzige Schlitze von nur 70 Mikrometern  Breite, die sich mit dreifacher Schallgeschwindigkeit im Vakuum reibungsfrei gegen den Röntgenstrahl bewegen. Damit steht den Nutzerinnen und Nutzern nun auch im Normalbetrieb ein Single-Bunch-Modus zur Verfügung.

In Speicherringen wie BESSY II kreisen kurze Elektronenpulse und erzeugen Röntgenblitze, wenn sie an einem der fast 50 Strahlrohre vorbeikommen. Viele Experimente nutzen aber gar nicht alle der 400 möglichen Pulse pro Umlauf, die der Elektronenstrahl erzeugt, sondern erfordern nur einen einzigen Puls. Damit nur dieser gewünschte Puls die Probe erreicht und alle anderen ausgeblendet werden, könnte man ein Rad mit Löchern in den Strahlengang setzen, das mit den Elektronen im Ring synchron läuft. Doch diese einleuchtende Idee war keineswegs einfach umzusetzen:  denn dieses Rad muss so schnell sein, dass es den Röntgenstrahl alle 800 Nanosekunden (ns) passieren lässt – es muss sich also mit der dreifachen Schallgeschwindigkeit von rund 1 km/s drehen und ist dabei enormen Materialbelastungen durch Fliehkräfte ausgesetzt.

Tatsächlich ist es nun einem Team aus Physikern und Ingenieuren aus dem Forschungszentrum Jülich, dem Max-Planck-Institut für Mikrostrukturphysik Halle/S. und dem HZB gelungen, so ein Gerät zu entwickeln und im Dauerbetrieb an einem BESSY II Strahlrohr bereitzustellen. Es besteht  aus einer speziell geformten Scheibe aus einer besonderen Aluminiumlegierung, die am äußeren  Rand winzige Schlitze von nur 70 µm Breite hat. Diese Schlitze bewegen sich mit rund 1 km/s im Vakuum reibungsfrei gegen den Röntgenstrahl. Dabei wird die Drehung mit einer ultraschnellen digitalen Regelungselektronik  hochpräzise (auf 2 ns genau) gesteuert, so  dass  nur ein einziger Röntgenpuls aus dem gesamten Puls-Zug bei BESSY II durchkommt und anderen blockiert werden. 

Experimentatoren an diesem Strahlrohr können nun selbst entscheiden, ob sie den gepulsten „Single Bunch Modus“ oder den vollen quasi-kontinuierlichen Röntgenstrahl benutzen wollen. „Dies ist besonders wichtig für die ultraschnelle Röntgenphysik und Flugzeitspektroskopie-Methoden, die in unserem Zukunftsprojekt BESSY-VSR eine große Rolle spielen werden - denn hier sollen ultrakurze  Röntgenpulse unterschiedlicher Länge bereitgestellt werden“, erklärt Karsten Holldack aus dem Institut Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung am HZB.

Die Arbeit wurde jetzt im renommierten Fachjournal Optics Letters vorgestellt:Phase-locked MHz pulse selector for x-ray sources, Daniel F. Förster, Bernd Lindenau, Marko Leyendecker, Franz Janssen, Carsten Winkler, Frank O. Schumann, Jürgen Kirschner, Karsten Holldack, and Alexander Föhlisch

Optics Letters, Vol. 40, 10, (2015); doi:10.1364/OL.40.002265 

KH/arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.