BESSY II stellt auf Halbleiter-Hochfrequenzsender um
Der neue Halbleitersender: die Netzteilsektion befindet sich im linken Schrank (schwarz) und die drei HF-Einheiten stecken hinter den hellgrauen Schranktüren. Im rechten Rack ist die Steuerung untergebracht. © HZB
BESSY II besitzt vier Kavitäten, die mit einem elektromagnetischen Wechselfeld hoher Leistung angeregt werden, um die Energieverluste des Elektronenstrahls auszugleichen. Bislang sorgten so genannte Klystron-Röhrensender für die Anregung der Kavitäten mit möglichst sauberen 500 Megahertz. Doch inzwischen gibt es kaum noch Ersatzteile für solche Röhrensender. Ein HZB-Team hat daher den Shutdown genutzt, um zwei Klystron-Röhrensender durch moderne Halbleiter-Sender auszutauschen. Die restlichen Klystron-Röhrensender sollen bis Ende des Jahres ausgetauscht werden.
„Diese Technik ist zuerst am Synchrotron SOLEIL, Frankreich, entwickelt und eingesetzt worden. SOLEIL arbeitet jedoch mit Anregungsfrequenzen von 350 Megahertz. Wir dagegen arbeiten wie die meisten Synchrotronlichtquellen mit Frequenzen von 500 Megahertz. Dafür mussten wir das Konzept neu entwickeln. Die Entwicklung und Fertigung der Senderendstufen wurden von einer deutschen Firma (Cryoelectra) übernommen. Wir sind jetzt die erste Photonenquelle, die mit dieser Technik bei 500 Megahertz eine Anregungsleistung von 75 Kilowatt pro Sender erreicht“, erklärt Dr. Wolfgang Anders vom Institut SRF - Wissenschaft und Technologie.
Während die Klystron-Röhrensender Versorgungspannungen von 26 Kilovolt erforderten, arbeiten die Halbleitersender bei nur 50 Volt, benötigen aber höhere Stromstärken. Ein großer Vorteil ist die Energieeinsparung: Denn die Klystron-Röhrensender ziehen stets volle Leistung aus dem Netz, die Halbleiter-Sender regeln dies dagegen bedarfsgerecht und entnehmen dem Stromanschluss nur so viel Leistung wie der Elektronenstrahl abfordert, um Energieverluste auszugleichen. Außerdem haben die neuen Sender ein deutlich reduziertes Rauschen: die Kavität wird viel sauberer angeregt, was wiederum die Strahlqualität verbessert.
„Mein Team arbeitet seit drei Jahren daran, die neue Technik an BESSY II zu implementieren. Allein ein Jahr hat die umfangreiche Programmierung der Kontrollsystemanbindung und Signalverarbeitung der Solid-State Amplifier durch einen neu eingestellten Ingenieur gedauert. Nun besitzen wir eine sehr robuste Lösung, die vermutlich auch für andere Synchrotronlichtquellen interessant ist“, sagt Wolfgang Anders.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14191;sprache=enA
- Link kopieren
-
Batterieforschung mit dem HZB-Röntgenmikroskop
Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.
-
BESSY II: Neues Verfahren für bessere Thermokunststoffe
Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
-
Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.