BESSY II stellt auf Halbleiter-Hochfrequenzsender um
BESSY II besitzt vier Kavitäten, die mit einem elektromagnetischen Wechselfeld hoher Leistung angeregt werden, um die Energieverluste des Elektronenstrahls auszugleichen. Bislang sorgten so genannte Klystron-Röhrensender für die Anregung der Kavitäten mit möglichst sauberen 500 Megahertz. Doch inzwischen gibt es kaum noch Ersatzteile für solche Röhrensender. Ein HZB-Team hat daher den Shutdown genutzt, um zwei Klystron-Röhrensender durch moderne Halbleiter-Sender auszutauschen. Die restlichen Klystron-Röhrensender sollen bis Ende des Jahres ausgetauscht werden.
„Diese Technik ist zuerst am Synchrotron SOLEIL, Frankreich, entwickelt und eingesetzt worden. SOLEIL arbeitet jedoch mit Anregungsfrequenzen von 350 Megahertz. Wir dagegen arbeiten wie die meisten Synchrotronlichtquellen mit Frequenzen von 500 Megahertz. Dafür mussten wir das Konzept neu entwickeln. Die Entwicklung und Fertigung der Senderendstufen wurden von einer deutschen Firma (Cryoelectra) übernommen. Wir sind jetzt die erste Photonenquelle, die mit dieser Technik bei 500 Megahertz eine Anregungsleistung von 75 Kilowatt pro Sender erreicht“, erklärt Dr. Wolfgang Anders vom Institut SRF - Wissenschaft und Technologie.
Während die Klystron-Röhrensender Versorgungspannungen von 26 Kilovolt erforderten, arbeiten die Halbleitersender bei nur 50 Volt, benötigen aber höhere Stromstärken. Ein großer Vorteil ist die Energieeinsparung: Denn die Klystron-Röhrensender ziehen stets volle Leistung aus dem Netz, die Halbleiter-Sender regeln dies dagegen bedarfsgerecht und entnehmen dem Stromanschluss nur so viel Leistung wie der Elektronenstrahl abfordert, um Energieverluste auszugleichen. Außerdem haben die neuen Sender ein deutlich reduziertes Rauschen: die Kavität wird viel sauberer angeregt, was wiederum die Strahlqualität verbessert.
„Mein Team arbeitet seit drei Jahren daran, die neue Technik an BESSY II zu implementieren. Allein ein Jahr hat die umfangreiche Programmierung der Kontrollsystemanbindung und Signalverarbeitung der Solid-State Amplifier durch einen neu eingestellten Ingenieur gedauert. Nun besitzen wir eine sehr robuste Lösung, die vermutlich auch für andere Synchrotronlichtquellen interessant ist“, sagt Wolfgang Anders.