Antike Osiris-Statuen aus dem Ägyptischen Museum in Florenz mit Neutronen durchleuchtet

Ein italienisches Forscherteam des “Nello Carrara” Institute of Applied Physics drei antike Bronzestatuen zerstörungsfrei mit Neutronen am Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) untersucht. Die kleinen Skulpturen aus dem Ägyptischen Museum in Florenz verkörpern Osiris, den ägyptischen Gott des Jenseits und der Unterwelt.Über ihre Legierung und Fertigung war bislang wenig bekannt.

Mithilfe mehrere analytischer Verfahren konnten die Forscher nun zeigen, dass die Herstellungstechnik und die verwendeten Materialien der drei Statuetten erstaunlich ähnlich waren, obwohl sie in verschiedenen Regionen des antiken Ägyptens gefertigt wurden. Der Ursprung und das genaue Alter der Statuen sind unbekannt.

Historische Kunstgegenstände sind für die Forschung von unschätzbarem Wert, weil sie viel über das Leben und die Kultur antiker Gesellschaften verraten. Doch Wissenschaftler stehen dabei vor der Herausforderung, dass sie meist keine Materialproben entnehmen können, um die Objekte nicht zu beschädigen. Das Forschungsteam kombinierte erstmals mehrere zerstörungsfreie Methoden miteinander, um die Entstehung der OSIRIS-Statuten zu enträtseln. Sie nutzten die Neutronentomografie am Helmholtz-Zentrum Berlin, die zeitaufgelöste Neutronen-Diffraktometrie an der Neutronenquelle ISIS (Großbritannien) und die laserinduzierte Plasmaspektroskopie. Diese Methoden ermöglichten, verschiedene, sich ergänzende Informationen über die Bronzestatuetten des Osiris zu gewinnen.

„Neutronen eignen sich sehr gut, um Materialien aus Metallen zu untersuchen. Sie können tief in die Objekte eindringen. An unserem Instrument CONRAD an der Neutronenquelle BERII konnten wir das Innere der Osiris-Statuen dreidimensional darstellen“, sagt Dr. Nikolay Kardjilov, Mitautor der Veröffentlichung und verantwortlicher Wissenschaftler für das Neutronentomografie-Instrument am HZB.    

Die Forscherinnen und Forscher des Institute of Applied Physics (IFAC) wollten mit dieser Arbeit herausfinden, wie die Statuen hergestellt worden waren, aus welchen Materialien sie bestanden und klären, warum sie unterschiedlich gut erhalten waren. Die Analysen zeigten, dass die drei Statuen aus einem ähnlichen Ton-Kern bestanden und die Kunsthandwerker in der Antike die Gussform für die Bronzeskulpturen nach einem ähnlichen Verfahren herstellten. Ebenso waren die Metalllegierungen der Statuen ähnlich zusammengesetzt. Dieses Ergebnis erstaunte die Wissenschaftler, weil die Statuen vermutlich in verschiedenen Regionen Ägyptens angefertigt wurden.

Die Bronzestatuen des Osiris sind seit dem 19. Jahrhundert in Besitz des Ägyptischen Museums in Florenz. Die erste Statue wurde im Rahmen der archäologischen Schiaparelli-Expedition Ende des 19. Jahrhunderts nach Italien gebracht; die beiden anderen Statuen wurden dem Museum 1848 und 1868 von einer Adelsfamilie geschenkt. Die Statue aus der Schiaparelli-Expedition war die größte (Höhe: 37 Zentimeter, Gewicht: 1400 Gramm). Die anderen Statuetten waren deutlich kleiner (Höhe: 19 Zentimeter, 230 Gramm sowie 18 Zentimeter, 300 Gramm). Das genaue Alter und der Ursprung ist unbekannt.

Die Forschungsarbeit wurde am “Nello Carrara” Institute of Applied Physics (IFAC) realisiert, einem Teil des National Research Council (CNR). Der Forschungsrat ist die größte öffentliche Forschungsorgaisation Italiens.


Originalpublikation
J. Agresti, I. Osticioli, M. C. Guidotti, and G. Capriotti, N. Kardjilov, A. Scherillo, S. Siano (2015) Combined neutron and laser techniques for technological and compositional investigations of hollow bronze figurines, J. Anal. At. Spectrom., DOI: 10.1039/C4JA00447G

SZ

  • Link kopieren

Das könnte Sie auch interessieren

  • Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Science Highlight
    02.12.2024
    Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die ultraschnelle Dynamik dieses Prozesses sichtbar zu machen. Dabei lösen die Röntgenphotonen einen „molekularen Katapulteffekt“ aus: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse, die von einem Katapult abgeschossen werden, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.