Baubeginn für Beschleunigerhalle bERLinPro am Helmholtz-Zentrum Berlin

3D-Modelle der Beschleunigerhalle für bERLinPro

3D-Modelle der Beschleunigerhalle für bERLinPro

Am HZB- Standort Adlershof entsteht ein neuer Linearbeschleuniger mit Energierückgewinnung

Im Rahmen von bERLinPro entwickeln Forscherinnen und Forscher des HZB eine neuartige Beschleunigertechnologie. Mit diesem Prototypen werden alle Schlüsselelemente für einen Hochstrombetrieb solcher Anlagen entwickelt und getestet. Er soll die Machbarkeit dieser Technologie demonstrieren.

Herausfordernd ist dabei nicht nur die neue Beschleunigertechnologie. Auch die Bauarbeiten müssen spezielle Anforderungen berücksichtigen. Zum einen die Anforderungen des Strahlenschutzes, die durch den späteren Betrieb der Anlage bestehen und ein unterirdisches Gebäude erfordern. Zum anderen ist der Grundwasserspiegel unter dem Gelände sehr hoch. Aus diesem Grund wird die Baugrube des Gebäudes in einer so genannten Trogbauweise errichtet. Das bedeutet, dass die eigentliche Beschleunigerhalle von einer Betonwanne umgeben ist. Unterstützt von Pumpen, hält diese während der Bauphase das Wasser vom Gebäude fern. Die Trogbauweise gilt bei schwierigem Baugrund als besonders sicheres und umweltverträgliches Verfahren, weil dadurch Auswirkungen auf den Boden und auf Nachbargebäude vermieden werden.

In der ersten Bauphase werden die seitlichen Schlitzwände und eine Bodenplatte in Form von überlappenden Betonlinsen in 12 Metern Tiefe errichtet. Erst danach beginnen die Arbeiter mit dem Bau der Beschleunigerhalle. Aus Gründen des Strahlenschutzes wird diese dann auch mit einem zirka drei Meter hohen Erdwall bedeckt. Zusätzlich wird für die Versorgung der Beschleunigeranlage eine Technikhalle benötigt. Sie wird zehn Meter hoch sein und ist direkt mit der Beschleunigerhalle verbunden. Die Baukosten belaufen sich auf ca. 12,7 Millionen Euro.

Die Entwicklung von Linac-basierten Lichtquellen bietet die einzigartige Chance, das komplette und komplementäre Spektrum an Synchrotronstrahlungsquellen in der Helmholtz-Gemeinschaft anzubieten. Dazu gehören Freie-Elektronen Laser, Speicherringe und nun auch Linearbeschleuniger mit Energierückgewinnung  (englisch: Energy Recovery Linacs - ERL). Der ERL vereinigt als einziger Beschleunigertyp die Vorteile von Speicherringen und Linearbeschleunigern: Er erlaubt zum einen statische Strukturuntersuchungen mit hoher Auflösung. Es sind aber zeitaufgelöste Messungen möglich, mit denen man die Dynamik einer Struktur bei moderater Pulsintensität untersuchen kann, die die Proben nicht zerstört. Da zwischen beiden Betriebsmodi schnell gewechselt werden kann, lassen sich solch komplementäre Untersuchungen an der gleichen Probe innerhalb kurzer Zeit durchführen. Das ist ein ausschlaggebender Vorteil für viele Experimente. Zudem können bei ERL basierten Lichtquellen viele Beamlines gleichzeitig betrieben werden, so wie man es von Speicherringquellen kennt.

Die Funktionsweise des ERL

Im Energy Recovery Linac Prototype bERLinPro werden Elektronenpakete in einem Injektor erzeugt und in einem langen, geraden und supraleitenden Linearbeschleuniger (Linac) auf nahezu Lichtgeschwindigkeit beschleunigt. Die Elektronen werden dann durch Magnete, so genannte Undulatoren, geführt und erzeugen dort Röntgenstrahlung wie in einer Synchrotronstrahlungsquelle. Sie haben jedoch eine höhere Brillanz, da die Elektronenpakete im Linac kompakter bleiben als in einem Kreisbeschleuniger. Die Elektronenpakete werden kontinuierlich injiziert und kommen nach ihrem Umlauf wieder in den Linac zurück, wo sie abgebremst werden. Dadurch gewinnt man nahezu die gesamte Energie zurück.

Den Baufortschritt von bERLinPro können Sie hier über unsere Webcam im Zeitraffermodus verfolgen.

  • Link kopieren

Das könnte Sie auch interessieren

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.
  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.