Maximale Effizienz, minimaler Einsatz

Die a-Si:H-Unterzellen werden auf dem transparenten Frontkontakt (AZO) abgeschieden, als Rückkontakt dient eine ITO-Schicht. Die organische Sub-Zelle besitzt einen Frontkontakt aus leitfähigem PEDOT und einen metallischen Rückkontakt.

Die a-Si:H-Unterzellen werden auf dem transparenten Frontkontakt (AZO) abgeschieden, als Rückkontakt dient eine ITO-Schicht. Die organische Sub-Zelle besitzt einen Frontkontakt aus leitfähigem PEDOT und einen metallischen Rückkontakt. © Uni Potsdam

Dünnschichtsolarzelle auf Siliziumbasis nutzt mit organischer Zusatzschicht auch infrarotes  Licht 

Die neue hybride Solarzelle ist aus zwei extrem dünnen amorphen Siliziumschichten sowie einer organischen Schicht aufgebaut, zusammen sind ihre aktiven Schichten nicht dicker als einen Mikrometer. Trotz minimalem Materialeinsatz erreicht die Hybridzelle damit einen Rekord-Wirkungsgrad von 11,7 %. Die organische Schicht besteht aus so genannten „Fußballmolekülen“ oder Fullerenen, die mit halbleitenden Polymeren gemischt sind. Diese Schicht wandelt auch noch das Infrarotlicht in elektrische Energie um, das in den Siliziumschichten nicht genutzt werden kann.

Die komplementäre Verbindung organischer und anorganischer Materialien in einer Stapelzelle ist eine vielversprechende Option für Solarzellen der Zukunft. Die Zelle wurde im Rahmen des BMBF-Programms „Spitzenforschung und Innovation  in den Neuen Ländern“ gemeinsam von Teams der Universität Potsdam und des Helmholtz-Zentrums Berlin (HZB) entwickelt, die ihre Arbeit nun im renommierten Fachmagazin „Advanced Materials“ publiziert haben.

Grundbaustein der Zelle ist eine sehr dünne Schicht aus amorphem Silizium, die mit Wasserstoff durchsetzt ist (a-Si:H). Solche einfachen Dünnschicht-Solarzellen erreichen nur geringe Wirkungsgrade und nutzen lediglich Photonen im blauen und grünen Bereich des Lichtspektrums.

Steffen Roland, Doktorand aus der Gruppe von Professor Dr. Dieter Neher an der Universität Potsdam, und Sebastian Neubert, Doktorand aus der Gruppe von Professor Dr. Rutger Schlatmann vom Kompetenzzentrum Dünnschicht- und Nanotechnologie für Photovoltaik (PVcomB) des HZB, haben diese Schicht zunächst um eine weitere a-Si:H-Schicht zu einer Tandemzelle erweitert und zusätzlich eine organische Schicht aufgebracht, die es ermöglicht, auch infrarotes Licht in elektrische Energie umzuwandeln. So konnten sie den Wirkungsgrad der Triplezelle  auf über 11 % steigern. Gleichzeitig ist diese Solarzellenarchitektur deutlich beständiger gegenüber Alterungseffekten. Dieser Erfolg zeigt eindrucksvoll, wie die enge Zusammenarbeit von Doktoranden aus unterschiedlichen Fachrichtungen (organische Halbleiter und  anorganische Halbleiter) zu neuen Devicestrukturen mit verbesserten Eigenschaften führt.

„Die Zelle lässt sich einfach mit etablierten Dünnschichttechnologien herstellen, die industriegängig und auch für die Produktion von großen Folien geeignet sind“, erklärt Rutger Schlatmann. Und Dieter Neher fügt an: „Die hohen Absorptionskoeffizienten der a-Si:H-Schichten und die Eigenschaften der organischen Schicht ermöglichen eine aktive Schichtstruktur, die nicht dicker als einen Mikrometer ist, das ist maximale Effizienz mit minimalem Einsatz!“.

Article first published online 7 January 2015 in Advanced Materials: Hybrid Organic/Inorganic Thin-Film Multijunction Solar Cells Exceeding 11% Power Conversion Efficiency
DOI: 10.1002/adma.201404698

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.
  • Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    Nachricht
    24.10.2024
    Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    ETIP PV ist ein Fach-Gremium, das die Europäische Kommission zu Photovoltaik berät. Nun hat der ETIP PV-Lenkungsausschuss einen neuen Vorsitzenden sowie zwei stellvertretende Vorsitzende für die Amtszeit 2024–2026 gewählt. Rutger Schlatmann, Bereichssprecher Solare Energie am HZB und Professor an der HTW Berlin, wurde als Vorsitzender wiedergewählt.