Elektronenspin-Flips unter neuem Licht

Karsten Holldack, Alexander Schnegg und Joscha Nehrkorn am THz-EPR Messplatz am Speicherring BESSY II. <span><span><br /></span></span>

Karsten Holldack, Alexander Schnegg und Joscha Nehrkorn am THz-EPR Messplatz am Speicherring BESSY II.
© HZB

Wissenschaftler im Berlin Joint EPR Lab am Helmholtz-Zentrum Berlin (HZB) und der University of Washington (UW) haben eine neue theoretische Beschreibung ausgearbeitet, die es erlaubt, Übergangswahrscheinlichkeiten zwischen Spin-Zuständen in „Elektronen Paramagnetische Resonanz“ (EPR)-Experimenten mit beliebiger Orientierung und Polarisation der anregenden Strahlung zu berechnen. Die Physiker haben den neuen Ansatz bereits mit einem Terahertz-EPR-Experiment an der Synchrotronquelle BESSY II getestet und veröffentlichen ihre Arbeit am 6. Januar 2015 im renommierten Fachjournal Physical Review Letters (DOI 10.1103/PhysRevLett.114.010801).

Elektronenspins sind Quantenobjekte mit faszinierenden Eigenschaften. Sie können als empfindliche Sonden genutzt werden, um die Struktur von Materialien auf atomarer Ebene zu untersuchen. Dabei verhalten sich Elektronenspins wie winzige Magnete, die in einem äußeren Magnetfeld entweder parallel oder antiparallel ausgerichtet werden. Elektromagnetische Strahlung ist genau dann in der Lage Übergänge zwischen diesen beiden Zuständen (Spin-Flips) herbeizuführen, wenn ihre Energie genau dem Energieunterschied der beiden Orientierungen entspricht. Man bezeichnet diese Methode als „Elektronen Paramagnetische Resonanz“ (EPR), mit ihr können die Wechselwirkungsenergien der Spins untersucht und ihre Zustände manipuliert werden. Die Wahrscheinlichkeit für einen EPR-induzierten Spin-Flip hängt davon ab, wie die magnetische Komponente der elektromagnetischen Strahlung gegenüber dem äußeren Magnetfeld orientiert ist. Hier bestand bisher eine Lücke in der theoretischen Beschreibung, da Übergangswahrscheinlichkeiten bislang nur für wenige experimentelle Anordnungen berechnet werden.

Gleichungen für jede Geometrie

Joscha Nehrkorn, Alexander Schnegg, Karsten Holldack (HZB) und Stefan Stoll (UW) ist es nun gelungen diese Beschränkung zu überwinden und Gleichungen abzuleiten, die die Übergangswahrscheinlichkeiten auch für andere experimentellen Anordnungen beschreiben. Die Gleichungen gelten für beliebige Ausrichtungen der anregenden Strahlung gegenüber dem äußeren Feld und für beliebig polarisierte Strahlung. „ Auf der Basis dieser Theorie haben wir ein allgemeinzugängliches Computerprogramm entwickelt, das es erlaubt die Ergebnisse von EPR-Experimenten  zu interpretieren und sogar vorherzusagen, die bisher nur teilweise verstanden wurden“ erklärt Joscha Nehrkorn.

Test bereits gelungen

Um ihren Ansatz zu testen, haben die Autoren die Spins von dreiwertigen Eisenatomen in kleinen organischen Molekülen, so genannten Porphyrinen, in einem hohen Magnetfeld ausgerichtet und dann mit intensiver linear polarisierter THz-Strahlung aus dem Elektronenspeicherring BESSY II des HZB bestrahlt. Dabei variierten sie die Richtung der magnetischen Komponente der THz-Strahlung relativ zum äußeren Magnetfeld. Durch den Vergleich zwischen berechneten und experimentell ermittelten EPR-Signalen konnten sie die Richtigkeit des neuen theoretischen Ansatzes überprüfen. „Das Experiment zeigt auf eindrucksvolle Weise das Potential der kohärenten Synchrotronstrahlung für THz-EPR Experimente. Diese Möglichkeiten können in Zukunft durch BESSY VSR, die nächste Ausbaustufe unserer Strahlungsquelle, sogar noch gesteigert werden“ erläutert Karsten Holldack, der den THz-Messplatz wissenschaftlich betreut.

Alexander Schnegg, der das Projekt im Rahmen des DFG Schwerpunktprogrammes SPP 1601 durchführt, erklärt: „Diese Weiterentwicklungen in der EPR-Methodik können zukünftig helfen, die Aussagekraft von EPR-Experimenten z.B. für Fragestellungen in den Lebenswissenschaften, neuen Informationstechnologien (Spintronik, Quantencomputer) oder in der Forschung an Energiematerialien deutlich zu steigern und bereiten den Weg für neuartige EPR-Experimente.“

Den Beitrag finden Sie hier:
General Magnetic Transition Dipole Moments for Electron Paramagnetic Resonance (Autoren: J. Nehrkorn, A. Schnegg, K. Holldack and S. Stoll), Physical Review Letters.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Science Highlight
    02.12.2024
    Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die ultraschnelle Dynamik dieses Prozesses sichtbar zu machen. Dabei lösen die Röntgenphotonen einen „molekularen Katapulteffekt“ aus: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse, die von einem Katapult abgeschossen werden, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.