„Haut mit Muskeln“: Einfache Formeln beschreiben komplexes Verhalten

Rasterelektronenmikroskopie der Membran.

Rasterelektronenmikroskopie der Membran. © MPIKGF

In einer Zehntelsekunde rollt sich die Membran auf, wenn sie mit Azeton (blau) bedampft wird. </p>
<p>

In einer Zehntelsekunde rollt sich die Membran auf, wenn sie mit Azeton (blau) bedampft wird.

© MPIKGF

HZB-Forscher hilft Chemikern, mechanische Eigenschaften „biomimetischer“ Materialien zu verstehen

Seegurken verändern die Steifigkeit ihrer Haut, Venusfliegenfallen rollen ihre Blätter blitzschnell zusammen und auch Tannenzapfen können bei steigender Luftfeuchtigkeit ihre Schuppen zuklappen: Die Natur hat im Lauf der Evolution komplexe Materialien entwickelt, die auf äußere Reize mit mechanischer Bewegung reagieren. Das versuchen nun Chemiker ebenfalls, und mit Erfolg: Ein besonders schönes Ergebnis ist jetzt einem Team um  Dr. Jiayin Yuan aus dem MPI für Kolloid- und Grenzflächenforschung in Golm gelungen. Sie haben eine Membran synthetisiert, die sich extrem rasch zusammenrollt, wenn sie mit Dämpfen in Berührung kommt.

Welche Faktoren dabei für die hohe Geschwindigkeit sorgen, konnte nun Prof. Dr. Joe Dzubiella, ein theoretischer Physiker aus dem HZB, zeigen. In Nature communications berichten die Forscher über ihre Ergebnisse.

Das Material ist porös wie ein Schwamm und besteht aus Polymeren, die untereinander vernetzt sind. Dabei sind die oberen Schichten deutlich enger vernetzt als die unteren. Sobald die Membran nun bestimmte Gasmoleküle wie Azeton aufnimmt, quillt sie oben stärker auf als unten, so dass sie sich krümmt und zusammenrollt.

Diffusionsgleichung und einfache Geometrie

„Jiayin Yuan und sein Team haben die Phänomene bereits sehr gut beschrieben, darauf konnten wir aufsetzen“, berichtet Dzubiella. Er nahm daher an, dass die Gasmoleküle zunächst durch die Membran hindurchwandern oder „diffundieren“. Die Zeit, die sie benötigen, um die Membran zu durchdringen, wird durch die „Diffusionsgleichung“ beschrieben und hängt sowohl von der Porengröße als auch von der Dicke der Membran ab: Je größer die Poren sind und je dünner die Membran, desto schneller wandern die Gasmoleküle durch die Schicht. Genau dieses Verhalten, das die Diffusionsgleichung quantitativ beschreibt, haben die Chemiker bereits im Labor beobachtet.

Außerdem hat Dzubiella gezeigt, warum sich diese Membran regelrecht aufwickelt, wenn sie bedampft wird, also einen besonders kleinen Krümmungsradius besitzt:  „Das ist einfach Geometrie“, sagt er, „denn wenn die Membran sehr dünn ist,  genügen schon ganz kleine Ausdehnungen der oberen Schichten, um sie stark zu krümmen.“  Binnen einer zehntel Sekunde krümmt sich die Membran zum Kreis, nach einer halben Sekunde ist sie mehrfach aufgerollt. Das ist zehnmal schneller als bei vergleichbaren Materialien.

Membran reagiert auch auf Parfum

Joe Dzubiella arbeitet zusammen mit seinem Postdoc Dr. Jan Heyda nun weiter daran, die Bewegung und Einbettung der Gasmoleküle im Netzwerk der Membran auf dem Computer zu simulieren. Denn auf mikroskopischer Ebene sind die Vorgänge komplex, insbesondere können ganz unterschiedliche Wechselwirkungen zwischen den Polymermolekülen und den Gasen auftreten. So nimmt das Polymernetzwerk auch Wassermoleküle aus der Luftfeuchtigkeit auf. Wenn dann die Membran mit Azeton in Kontakt kommt, wandern Azetonmoleküle ins Netzwerk ein und verdrängen die Wassermoleküle. „Häufig zeigen dann erst Simulationen, wie das ablaufen könnte und welche Prozesse und Faktoren dabei entscheidend sind. Diese Erkenntnisse helfen dann wiederum den Chemikern, im Labor zielgerichtet den einen oder anderen Parameter zu optimieren um die gewünschten Eigenschaften zu erreichen“, erklärt Dzubiella.

Bei den Anwendungen sind der Fantasie keine Grenzen gesetzt; man könnte zum Beispiel auch andere Materialien mit solchen Membranen beschichten, die sich dann zusammenfalten, wenn sie mit bestimmten Molekülen in Kontakt kommen. Wie die Chemiker bereits gezeigt haben,  funktioniert das Zusammenrollen nicht nur mit dem stechend riechenden Azeton, sondern sogar mit französischem Parfum.

Originalpublikation: An instant multi-responsive porous polymer actuator driven by solvent molecule sorption
Qiang Zhao, John W.C. Dunlop, Xunlin Qiu, Feihe Huang, Zibin Zhang, Jan Heyda, Joachim Dzubiella, Markus Antonietti und Jiayin Yuan

Nature Communications, 1. Juli 2014; DOI: 10.1038/ncomms5293

Die Presseinfo des MPIKGF finden Sie hier.


arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.