Das ganze Spektrum der Elektrokatalyse an einem Tag

In den Pausen tauschten sich die Teilnehmer angeregt über die Vorträge und ihre eigenen Forschungsarbeiten aus. Foto: FAU 

In den Pausen tauschten sich die Teilnehmer angeregt über die Vorträge und ihre eigenen Forschungsarbeiten aus. Foto: FAU 

Am 4. April 2014 lud das Helmholtz-Institut Erlangen-Nürnberg (HI ERN) zu seiner ersten wissenschaftlichen Veranstaltung ein. Beim internationalen Symposium „Recent Achievements and Future Trends in Electrocatalysis“ präsentierten zehn führende Wissenschaftler auf dem Gebiet der “Elektrokatalyse” von hochrangigen nationalen und internationalen Forschungsstätten den rund 90 Teilnehmern ihre Forschungsarbeiten.

Am 4. April 2014 lud das Helmholtz-Institut Erlangen-Nürnberg (HI ERN) zu seiner ersten wissenschaftlichen Veranstaltung ein. Beim internationalen Symposium „Recent Achievements and Future Trends in Electrocatalysis“ präsentierten zehn führende Wissenschaftler auf dem Gebiet der “Elektrokatalyse” von hochrangigen nationalen und internationalen Forschungsstätten den rund 90 Teilnehmern ihre Forschungsarbeiten.

„Die Vortragenden gaben einen  umfassenden Überblick darüber, was aktuell auf dem Forschungsgebiet „Elektrokatalyse“ geschieht“, berichtet Prof. Dr. Roel van de Krol (HZB-Institut für Solare Brennstoffe), der zusammen mit zwei Kollegen an der Tagung teilgenommen hatte. Auch die zukünftige Direktorin bzw. der zukünftige Direktor des HI ERN soll schwerpunktmäßig auf dem Gebiet der Elektrokatalyse forschen. Neben innovativen Methoden zur chemischen Energiespeicherung über Wasserstofftechnologien wird am HI ERN auch druckbare Photovoltaik untersucht -  beide Forschungsthemen  sind wichtig, um die Energiewende in Deutschland zu meistern.

Das HI ERN wurde im Jahr 2013 als Institutsbereich des Instituts für Energie- und Klimaforschung des Forschungszentrums Jülich gegründet. Es wird als Außenstelle des Forschungszentrums Jülich aufgebaut und in enger Kooperation mit der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und dem HZB betrieben.

Die Zusammenarbeit zwischen dem Forschungszentrum Jülich, der FAU und dem HZB basiert auf gemeinsamen Forschungsprojekten, Berufungen und dem Austausch von Mitarbeitern und Studierenden. Vier Professuren und zwei Nachwuchsgruppen werden in den Jahren 2014 – 2016 am HI ERN aufgebaut. Sie werden jährlich mit ca. 5,5 Mio. € von der Helmholtz-Gemeinschaft gefördert. Bis 2018 wird der Institutsneubau abgeschlossen sein, der auf 2.500 Quadratmetern rund 50 Wissenschaftlerinnen und Wissenschaftler des HI ERN beherbergen soll.


red./HI ERN

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.