Eine neue Klasse von Halbleitern für effiziente nano-optische Bauteile

Die Probe besteht aus einer Lage Wolframselenid (orange), die auf einer Schicht aus Molybdänsulfid (blau) aufgebracht ist. Untersuchungen  mit dem SPEEM-Mikroskop an BESSY II zeigen, dass durch Ladungstransfer zwischen den beiden Halbleiterschichten ein elektrisches Potential von bis zu 400meV besteht.

Die Probe besteht aus einer Lage Wolframselenid (orange), die auf einer Schicht aus Molybdänsulfid (blau) aufgebracht ist. Untersuchungen mit dem SPEEM-Mikroskop an BESSY II zeigen, dass durch Ladungstransfer zwischen den beiden Halbleiterschichten ein elektrisches Potential von bis zu 400meV besteht. © F. Kronast/HZB

Wie die Infoplattform nanotechweb.org berichtet, könnten sich dünne Schichten aus bestimmten Chalkogeniden als nanooptische Bauelemente eignen, zum Beispiel als LEDs, Laser oder Solarzellen.  Einatomare Lagen aus solchen Verbindungen verhalten sich wie zweidimensionale Halbleiter. Nun haben Wissenschaftler der University of California und des Lawrence Berkeley National Lab eine so genannte Heteroverbindung aus zwei unterschiedlichen Chalkogeniden hergestellt und ihre elektronischen und optischen Eigenschaften auch am HZB an BESSY II untersucht.

Die Probe bestand aus einer einatomaren Lage aus Wolframselenid, die auf Molybdänsulfid aufgebracht war. „An BESSY II haben wir mit lokaler Röntgen-Photoemissionsspektroskopie am SPEEM-Mikroskop gesehen,  dass beide Schichten elektronisch miteinander koppeln und ein Ladungstransfer stattfindet“, sagt Dr. Florian Kronast vom HZB. Damit sind solche Chalkogenid-Heteroverbindungen interessante Kandidaten für neue Bauelemente.

Zum Artikel in nanotechweb.org:
Die Originalarbeit wurde in den PNAS publiziert: PNAS doi: 10.1073/pnas.1405435111

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.