Maßgeschneiderte Unordnung für optische Anwendungen

Ob eine Oberfläche (hier ein Schmetterlingsflügel) bunt schillert oder ebenmäßig weiß wirkt, hängt auch von ihrer Nanostrukturierung ab.

Ob eine Oberfläche (hier ein Schmetterlingsflügel) bunt schillert oder ebenmäßig weiß wirkt, hängt auch von ihrer Nanostrukturierung ab. © Hans Bernhard/Wikipedia/ unter CC

Silke Christiansen, HZB, koordiniert neues DFG Schwerpunkt-Programm

Die Deutsche Forschungsgemeinschaft (DFG) richtet in den nächsten sechs Jahren 16 neue Schwerpunktprogramme (SPP) ein. Darunter ist auch das SPP „Tailored Disorder“, das von Prof. Dr. Ing. Silke Christiansen (HZB, FU Berlin, Max Planck Institut für die Physik des Lichts) koordiniert wird. Ab 2015 werden die beteiligten Forschergruppen neuartige optische Technologien mit Hilfe von „maßgeschneiderter Unordnung“ erforschen. Das SPP „Tailored Disorder“ wird von 2015 bis voraussichtlich 2021 mit insgesamt rund 12 Mio. Euro von der DFG gefördert werden.

In den letzten Jahren hat es auf dem Gebiet der Nano-Optik große Fortschritte gegeben. Bisher wurde ein Höchstmaß an Regelmäßigkeit als Voraussetzung für perfekte Funktionalität angenommen. Dabei liefert die Natur viele Vorlagen für die Nutzung maßgeschneiderter Unordnung auf kleinsten Strukturskalen: So zeigen Schmetterlingsflügel schillernde Farben, während das nahezu identische Ausgangsmaterial bei Käfern der Familie Cyphochilus mit einer dreidimensionalen Nano-Architektur zu einer fast perfekt weißen, gleichmäßig streuenden Oberfläche führt. Erst in den letzten zwei Jahren werden auch unregelmäßige Strukturen systematisch auf ihren Nutzen für optische Anwendungen untersucht. Erste Publikationen belegen das erstaunliche Potenzial zufälliger Nanostrukturen, wie etwa das kleinste Spektroskop der Welt, das auf Unordnung basiert.

Das Potenzial von "Unordnung" ausloten

Um systematisch die Möglichkeiten dieser neuen Klasse von Materialien auszuloten, arbeiten  im Kernteam des SPP „Tailored Disorder“ anerkannte Wissenschaftlerinnen und Wissenschaftler aus mehreren Disziplinen zusammen, von den naturwissenschaftlichen Fachrichtungen Biologie, Physik, Chemie über die Informatik bis hin zur Ingenieursdisziplin Materialwissenschaften. Mit dieser vielfältigen Expertise kann die theoretische Beschreibung komplexer Systeme, die numerische Simulation, die Herstellung und Modifikation mit Hilfe von Nanostrukturierung (Top-Down-Ansatz) und die chemische Synthese (Bottom-up-Ansatz) realisiert werden, um am Ende maßgeschneiderte technologische Anwendungen von der Planung bis zur großskaligen Realisierung etablieren zu können.

Neuartige Solarzellen, optische Elemente oder Spezial-Lacke

„Beherrschen wir diese neuartigen Materialien, wird das völlig neue Möglichkeiten zur Kontrolle breitbandigen Lichts ergeben, da die Anzahl der Freiheitsgrade mit maßgeschneiderter Unordnung viel höher ist als für geordnete Systeme“, erklärt die Koordinatorin Prof. Dr. Ing. Silke Christiansen vom Helmholtz-Zentrum in Berlin (HZB). Die möglichen Anwendungen reichen von verbesserten Solarzellen über neuartige optische Elemente bis hin zu speziellen Autolacken. Aber auch in der Grundlagenforschung verspricht man sich neue Erkenntnisse, zum Beispiel zur so genannten Anderson-Lokalisierung in drei Dimensionen oder zum Verständnis der  Eigenschaften von  Zufalls-Lasern. Auch die Medizin wird von den Ergebnissen des SPP „Tailored Disorder“ profitieren: Denn versteht man die Streu-Eigenschaften von organischen Materialien wie etwa der menschlichen Haut, wird es auch möglich sein durch sie „hindurchzusehen“.


Die Partner sind :

  • Prof. Dr. Kurt Busch, Humboldt-Universität zu Berlin & Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V.
  • PD Dr. Silke Christiansen (Koordinatorin), Max-Planck Institut für die Physik des Lichts, Erlangen  & Institut ‘Nanoarchitekturen für die Energiewandlung’ am HZB
  • Dr. Helge Fabritius, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf
  • Prof. Dr. Georg von Freymann, Technische Universität Kaiserslautern & Fraunhofer Institut für Physikalische Messtechnik, Kaiserslautern
  • Prof. Dr. Kristel Michielsen, Institute for Advanced Simulation Jülich Supercomputing Centre, Forschungszentrum Jülich & RWTH Aachen
  • Prof. Dr. Wolfgang Tremel, Johannes Gutenberg-Universität Mainz
  • Prof. Dr. Siegfried R. Waldvogel, Johannes Gutenberg-Universität Mainz
  • Prof. Dr. Cordt Zollfrank (Ko-Koordinator), Technische Universität München

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.