Warum “altern” Lithium-Ionen Akkus?

Ursprünglich besitzt das Kathodenmaterial eine ABCABC-Struktur (links). Im Lauf mehrerer Ladezyklen wird diese Ordnung "abgebaut" zu  ABBCCA (rechts).

Ursprünglich besitzt das Kathodenmaterial eine ABCABC-Struktur (links). Im Lauf mehrerer Ladezyklen wird diese Ordnung "abgebaut" zu  ABBCCA (rechts).

Selbst die besten Akkus werden mit der Zeit schlechter. Warum dies so ist, hat nun erstmals ein HZB-Team direkt an BESSY II und DORIS beobachten können. Sie untersuchten dafür ein Kathodenmaterial, für Lithium-Ionen-Akkus der nächsten Generation. Dabei zeigte sich, dass die elektrochemischen Prozesse beim Laden zu Scherungen in den Sauerstofflagen führen. Diese Scherungen werden beim Entladen nicht komplett rückgängig gemacht, so dass die ursprünglich regelmäßige, kristalline Struktur im Lauf mehrerer Zyklen immer ungeordneter wird. Dies ist ein Hauptgrund dafür, dass Lithium-Ionen-Akkus im Lauf der Zeit „altern“.

“Wieder aufladbare Lithium-Ionen-Akkus liefern Strom für Handys, Laptops, Kameras und werden allmählich auch für die Automobil-Industrie interessant”, sagt Dr. Jatinkumar Rana vom HZB. Der junge Wissenschaftler und seine Kollegen haben mit der Gruppe um Prof. Dr. Martin Winter von der Universität Münster Lithium-reiche Kathodenmaterialien untersucht, die durch die Summenformel (x)Li2MnO3*(1-x)LiMO2 beschrieben werden. Dabei steht „M“ für ein Übergangsmetall wie Mangan, Chrom oder Eisen. Solche Kathodenmaterialien gelten als beste Kandidaten für die nächste Generation von Lithium-Ionen-Akkus. “Sie besitzen im Vergleich zu kommerziellen Kathodenmaterialien eine doppelt so hohe Kapazität und eine hohe Ladegeschwindigkeit. Außerdem enthalten sie weniger seltene und toxische Elemente wie Nickel oder Kobalt, was sie billiger und umweltfreundlicher macht“, sagt Rana.

Doch zu diesen positiven Eigenschaften kommen leider auch unerwünschte Effekte wie das Nachlassen der Batteriespannung im Lauf mehrerer Zyklen, so wie bei herkömmlichen Akkus auch. Außerdem ist nicht ausreichend bekannt, welche Rolle die Li2MnO3-Komponente bei den elektrochemischen Prozessen überhaupt spielt. “Um diese Fragen zu klären, haben wir untersucht, wie die elektrochemischen Prozesse beim Laden und Entladen die atomare Struktur der Li2MnO3-Komponente verändern”, berichtet Rana.

Die Wissenschaftler untersuchten Proben von Li2MnO3 während des ersten und des 33. Ladezyklus mit Röntgen-Absorptions-Spektroskopie (XAS) an den Synchrotronquellen BESSY II am HZB und DORIS am DESY. Dabei konnten sie beobachten, was beim Aufladen passierte: Beim ersten Aufladen wanderten Sauerstoffatome aus der Probe ab, außerdem führte bei jedem Ladeprozess der Austausch von Lithium- und Wasserstoff-Ionen zu einer Scherung in den Sauerstoff-Schichten; Damit konnten sie erstmals experimentell eine Vermutung bestätigen, die in Fachkreisen bereits länger diskutiert wurde: Das Material verliert mit der Zeit die ursprüngliche kristalline Struktur und die elektrochemische Leistung der Batterie wird schlechter.

Die Ergebnisse liefern nun jedoch auch konkrete Hinweise auf die entscheidenden elektrochemischen Prozesse in Lithium-reichen Kathodenmaterialien. „Eine Reihe dieser Materialien, die wir bisher untersuchen konnten, zeigt ähnliche strukturelle Veränderungen wie Li2MnO3. Aber inzwischen verstehen wir die elektrochemischen Prozesse besser, so dass wir in Zukunft die Leistung gezielt verbessern können”, hofft Rana.

Jatinkumar Rana et al.  “Structural Changes in Li2MnO3 Cathode Material for Li-Ion Batteries”, Advanced Energy Materials,  DOI: 10.1002/aenm.201300998

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.