Wie man mit Licht den Spin von topologischen Isolatoren manipuliert
Die Abbildung zeigt die typische Spintextur (Pfeile) eines topologischen Isolators und wie diese durch zirkular polarisiertes Licht kontrolliert verändert wird. Rader/Sachez-Barriga/HZB © Rader/Sachez-Barriga/HZB
HZB-Forscher haben am Synchrotronring BESSY II den topologischen Isolator Bismutselenid (Bi2Se3) mit spinauflösender Photoelektronenspektroskopie untersucht. Dabei fanden sie einen verblüffenden Unterschied: Wenn man Elektronen mit zirkular polarisiertem Licht im vakuumultravioletten Wellenlängenbereich (50 Elektronenvolt, eV) anregt, verhalten sie sich anders, als wenn man sie mit ultraviolettem Licht anregt (6 eV). Dieses Ergebnis könnte erklären, wie sich Spinströme in topologischen Isolatoren erzeugen lassen.
Im ersteren Fall – bei der Anregung mit 50 Elektronenvolt - weisen die emittierten Elektronen die für topologische Isolatoren typische Spintextur auf. Die Spins der Elektronen laufen hier in der Oberflächenebene im Kreis, ähnlich wie auf einem Verkehrsschild für "Kreisverkehr". Bei der Anregung mit 6 Elektronenvolt drehen sich die Spins der Elektronen komplett aus der Ebene heraus und nehmen dabei sogar diejenige Spinrichtung an, die mit rechts- bzw. linkszirkular polarisiertem Licht vorgegeben wird.
Topologische Isolatoren zeichnen sich dadurch aus, dass sie sich im Inneren des Materials elektrisch isolierend verhalten, ihre Oberfläche jedoch metallisch leitend ist. Sie gelten als interessante Kandidaten für neuartige Bauelemente für die Informationstechnologie. In solchen Bauelementen will man den Spin mithilfe von Licht beeinflussen.
Die in dieser Arbeit erzielten Ergebnisse liefern Erkenntnisse darüber, wie man in topologischen Isolatoren verlustlose Spinströme erzeugen kann.
Die Arbeit wird in Kürze in der Zeitschrift Physical Review X erscheinen, einer neu gegründeten Zeitschrift für herausragende Ergebnisse der American Physical Society.
OR
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=13928;sprache=dehttp://
- Link kopieren
-
Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.
-
Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
-
BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.