Wie man mit Licht den Spin von topologischen Isolatoren manipuliert

Die Abbildung zeigt die typische Spintextur (Pfeile) eines topologischen Isolators und wie diese durch zirkular polarisiertes Licht kontrolliert ver&auml;ndert wird. <em></em> <em>Rader/Sachez-Barriga/HZB</em>

Die Abbildung zeigt die typische Spintextur (Pfeile) eines topologischen Isolators und wie diese durch zirkular polarisiertes Licht kontrolliert verändert wird. Rader/Sachez-Barriga/HZB © Rader/Sachez-Barriga/HZB

HZB-Forscher haben am Synchrotronring BESSY II den topologischen Isolator Bismutselenid (Bi2Se3) mit spinauflösender Photoelektronenspektroskopie untersucht. Dabei fanden sie  einen verblüffenden Unterschied: Wenn man Elektronen mit zirkular polarisiertem Licht im vakuumultravioletten  Wellenlängenbereich (50 Elektronenvolt, eV) anregt, verhalten sie sich anders, als wenn man sie mit ultraviolettem Licht anregt (6 eV). Dieses Ergebnis könnte erklären, wie sich Spinströme in topologischen Isolatoren erzeugen lassen.

Im ersteren Fall – bei der Anregung mit 50 Elektronenvolt - weisen die emittierten Elektronen die für topologische Isolatoren typische Spintextur auf. Die Spins der Elektronen laufen hier in der Oberflächenebene im Kreis, ähnlich wie auf einem Verkehrsschild für "Kreisverkehr". Bei der Anregung mit 6 Elektronenvolt drehen sich die Spins der Elektronen komplett aus der Ebene heraus und nehmen dabei sogar diejenige Spinrichtung an, die mit rechts- bzw. linkszirkular polarisiertem Licht vorgegeben wird.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie sich im Inneren des Materials elektrisch isolierend verhalten, ihre Oberfläche jedoch metallisch leitend ist. Sie gelten als interessante Kandidaten für neuartige Bauelemente für die Informationstechnologie. In solchen Bauelementen will man den Spin mithilfe von Licht beeinflussen.

Die in dieser Arbeit erzielten Ergebnisse liefern Erkenntnisse darüber, wie man in topologischen Isolatoren verlustlose Spinströme erzeugen kann.

Die Arbeit wird in Kürze in der Zeitschrift Physical Review X erscheinen, einer neu gegründeten Zeitschrift für herausragende Ergebnisse der American Physical Society.

OR

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.  

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.