Hochleistungssolarzellen kostengünstiger herstellen

Dr. Sebastian Brückner untersuchte Silizium- und Germaniumsubstrate für Hochleistungssolarzellen. Foto: HZB / Silvia Zerbe

Dr. Sebastian Brückner untersuchte Silizium- und Germaniumsubstrate für Hochleistungssolarzellen. Foto: HZB / Silvia Zerbe

Dr. Sebastian Brückner promovierte mit „summa cum laude“ über Solarzellen aus III-V-Halbleitern

Solarzellen, die aus III-V Halbleitern bestehen, erreichen höchste Wirkungsgrade. Forscher feierten erst kürzlich einen neuen Weltrekord unter Beteiligung des HZB: Es gelang ihnen, eine Solarzelle mit einem Wirkungsgrad von 44,7 Prozent zu entwickeln. Hinter dieser Technologie steckt weiteres Potenzial, wenn die Teilprozesse bei der Herstellung der Hochleistungszellen noch besser kontrolliert werden können. Eine wichtige Herausforderung hat Sebastian Brückner aus dem Helmholtz-Zentrum Berlin im Rahmen seiner Promotion bewältigt. Er untersuchte die atomare Oberflächenstruktur von Silizium und Germanium, die als Substrat-Materialien für diese Solarzellen infrage kommen. Brückner legte überzeugend dar, wie Silizium- und Germaniumsubstrate optimal in Prozessgasumgebung präpariert werden müssen, um Defekte in den nachfolgenden III-V-Schichten zu vermeiden. Für seine Dissertation, die er an der Humboldt-Universität zu Berlin bei Prof. Dr. Recardo Manzke am Institut für Physik einreichte, erhielt er jetzt die akademische Bestnote – ein summa cum laude.

Solarzellen mit III-V-Halbleitern kommen wegen der hohen Wirkungsgrade vor allem bei der Energieversorgung von Satelliten im Weltall oder in Konzentrator-Photovoltaik-Systemen (Bündelung des Lichteinfalls z.B. durch Linsen) zum Einsatz. In der Industrie hat sich Germanium als Substrat für diese Zellen etabliert. Germanium ist im Vergleich zu Silizium teuer und aufwändig in der Herstellung, ebenso gibt es eine viel breitere Erfahrungsbasis im Umgang mit dem vielverwendeten Wafer-Material. Die Arbeit von Sebastian Brückner zeigt nun, dass ein Wechsel auf Silizium grundsätzlich möglich wäre.

Sebastian Brückner hat die Substrate, bestehend aus Silizium und Germanium, mit der metallorganischen chemischen Gasphasenabscheidung (MOCVD) präpariert und sich das Verhalten an deren Oberflächen und den Grenzflächen zu den III-V Halbleitermaterialien genau angeschaut. Dafür nutzte er verschiedene Ultrahochvakuum-basierte Methoden und eine spezielle in-situ-Spektroskopie (in-situ Reflexions-Anisotropie-Spektroskopie), um die atomaren Oberflächenstrukturen beider Materialien zu vergleichen und kontrolliert zu präparieren.  Entscheidend ist hier die Präparation von atomaren Doppelstufen auf der Substrat Oberfläche. Dem Nachwuchsforscher gelang es auch, wichtige Prozessparameter (unter anderem Temperatur und Druck) zu identifizieren, um Silizium- und Germanium-Substrate mit der exakt gewünschten atomaren Struktur herzustellen. Dieses Verfahren für Siliziumsubstrate wurde mittlerweile am HZB patentiert.

Auch für die Erzeugung solarer Brennstoffe können diese Ergebnisse Bedeutung haben, schlussfolgert Sebastian Brückner: „In Strukturen zur solaren Wasserspaltung werden Tandemkonfigurationen benötigt, in welchen  Absorber aus einer Silizium/III-V-Halbleiterkombination besonders geeignet wären. Verwendet man Silizium als Substrat, könnten solche Tandemzellen zudem kostengünstig hergestellt werden.“

Sebastian Brückner ist seit Juni 2011 in der Arbeitsgruppe von Prof. Thomas Hannappel an der TU Ilmenau beschäftigt und an das HZB im Rahmen einer Kooperation abgeordnet. Thomas Hannappel wechselte im Sommer 2011 nach Ilmenau und hat dort ein mittlerweile 16-köpfiges Team aufgebaut.

Der Titel der Dissertation von Sebastian Brückner lautet: “Atomic scale in situ control of Si(100) and Ge(100) surfaces in CVD ambient”. Die Zusammenfassung können Sie rechts downloaden.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.