Hochleistungssolarzellen kostengünstiger herstellen

Dr. Sebastian Brückner untersuchte Silizium- und Germaniumsubstrate für Hochleistungssolarzellen. Foto: HZB / Silvia Zerbe

Dr. Sebastian Brückner untersuchte Silizium- und Germaniumsubstrate für Hochleistungssolarzellen. Foto: HZB / Silvia Zerbe

Dr. Sebastian Brückner promovierte mit „summa cum laude“ über Solarzellen aus III-V-Halbleitern

Solarzellen, die aus III-V Halbleitern bestehen, erreichen höchste Wirkungsgrade. Forscher feierten erst kürzlich einen neuen Weltrekord unter Beteiligung des HZB: Es gelang ihnen, eine Solarzelle mit einem Wirkungsgrad von 44,7 Prozent zu entwickeln. Hinter dieser Technologie steckt weiteres Potenzial, wenn die Teilprozesse bei der Herstellung der Hochleistungszellen noch besser kontrolliert werden können. Eine wichtige Herausforderung hat Sebastian Brückner aus dem Helmholtz-Zentrum Berlin im Rahmen seiner Promotion bewältigt. Er untersuchte die atomare Oberflächenstruktur von Silizium und Germanium, die als Substrat-Materialien für diese Solarzellen infrage kommen. Brückner legte überzeugend dar, wie Silizium- und Germaniumsubstrate optimal in Prozessgasumgebung präpariert werden müssen, um Defekte in den nachfolgenden III-V-Schichten zu vermeiden. Für seine Dissertation, die er an der Humboldt-Universität zu Berlin bei Prof. Dr. Recardo Manzke am Institut für Physik einreichte, erhielt er jetzt die akademische Bestnote – ein summa cum laude.

Solarzellen mit III-V-Halbleitern kommen wegen der hohen Wirkungsgrade vor allem bei der Energieversorgung von Satelliten im Weltall oder in Konzentrator-Photovoltaik-Systemen (Bündelung des Lichteinfalls z.B. durch Linsen) zum Einsatz. In der Industrie hat sich Germanium als Substrat für diese Zellen etabliert. Germanium ist im Vergleich zu Silizium teuer und aufwändig in der Herstellung, ebenso gibt es eine viel breitere Erfahrungsbasis im Umgang mit dem vielverwendeten Wafer-Material. Die Arbeit von Sebastian Brückner zeigt nun, dass ein Wechsel auf Silizium grundsätzlich möglich wäre.

Sebastian Brückner hat die Substrate, bestehend aus Silizium und Germanium, mit der metallorganischen chemischen Gasphasenabscheidung (MOCVD) präpariert und sich das Verhalten an deren Oberflächen und den Grenzflächen zu den III-V Halbleitermaterialien genau angeschaut. Dafür nutzte er verschiedene Ultrahochvakuum-basierte Methoden und eine spezielle in-situ-Spektroskopie (in-situ Reflexions-Anisotropie-Spektroskopie), um die atomaren Oberflächenstrukturen beider Materialien zu vergleichen und kontrolliert zu präparieren.  Entscheidend ist hier die Präparation von atomaren Doppelstufen auf der Substrat Oberfläche. Dem Nachwuchsforscher gelang es auch, wichtige Prozessparameter (unter anderem Temperatur und Druck) zu identifizieren, um Silizium- und Germanium-Substrate mit der exakt gewünschten atomaren Struktur herzustellen. Dieses Verfahren für Siliziumsubstrate wurde mittlerweile am HZB patentiert.

Auch für die Erzeugung solarer Brennstoffe können diese Ergebnisse Bedeutung haben, schlussfolgert Sebastian Brückner: „In Strukturen zur solaren Wasserspaltung werden Tandemkonfigurationen benötigt, in welchen  Absorber aus einer Silizium/III-V-Halbleiterkombination besonders geeignet wären. Verwendet man Silizium als Substrat, könnten solche Tandemzellen zudem kostengünstig hergestellt werden.“

Sebastian Brückner ist seit Juni 2011 in der Arbeitsgruppe von Prof. Thomas Hannappel an der TU Ilmenau beschäftigt und an das HZB im Rahmen einer Kooperation abgeordnet. Thomas Hannappel wechselte im Sommer 2011 nach Ilmenau und hat dort ein mittlerweile 16-köpfiges Team aufgebaut.

Der Titel der Dissertation von Sebastian Brückner lautet: “Atomic scale in situ control of Si(100) and Ge(100) surfaces in CVD ambient”. Die Zusammenfassung können Sie rechts downloaden.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Nachricht
    26.03.2025
    Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Samira Jama Aden, Architektin in der Beratungstelle für bauwerkintegrierte Photovoltaik (BAIP), ist der Arbeitsgruppe “Environmental, Social and Governance (ESG)” der ETIP PV - The European Technology & Innovation Platform for Photovoltaics beigetreten.
  • Die Zukunft der Energie: Empfehlungen der Wissenschaft an die Politik
    Nachricht
    21.03.2025
    Die Zukunft der Energie: Empfehlungen der Wissenschaft an die Politik
    Expert*innen des HZB haben ihr Fachwissen in den hier kurz vorgestellten Positionspapieren eingebracht.
    Zu den Themen gehören die Entwicklung innovativer Materialien für eine nachhaltige Energieversorgung und die Kreislaufwirtschaft.
    Fachleute aus verschiedenen Bereichen haben gemeinsam Lösungen und Handlungsempfehlungen formuliert.