Auf dem Weg zu Graphen in Solarzellen

Die Graphen-Schicht ist nur eine Atomlage dick (0,3 Angström oder 0,03 Nanometer), Ladungsträger können sich allerdings sehr frei darin bewegen. Diese Eigenschaft bleibt erhalten, auch wenn die Graphen-Schicht mit amorphem oder polykristallinem Silizium bedeckt wird.

Die Graphen-Schicht ist nur eine Atomlage dick (0,3 Angström oder 0,03 Nanometer), Ladungsträger können sich allerdings sehr frei darin bewegen. Diese Eigenschaft bleibt erhalten, auch wenn die Graphen-Schicht mit amorphem oder polykristallinem Silizium bedeckt wird. © Marc A. Gluba/HZB

Überraschendes Ergebnis:Graphen bleibt Graphen, auch unter Silizium

Graphen ist extrem leitfähig und vollkommen lichtdurchlässig, dabei billig und ungiftig. Damit eignet  es sich perfekt als transparente Kontaktschicht in Solarzellen zum Abführen des Stroms, ohne den Lichteinfall zu verringern, zumindest theoretisch. Ob dies auch in der realen Welt funktioniert, war aber fraglich, denn „ideales“ Graphen – eine freischwebende flache Wabenstruktur aus einer einzigen Lage Kohlenstoffatome – gibt es nicht: Wechselwirkungen mit benachbarten Schichten können die Eigenschaften von Graphen jedoch drastisch verändern. Dr. Marc Gluba und Prof. Dr. Norbert Nickel vom HZB-Institut für Silizium-Photovoltaik haben nun gezeigt, dass Graphen seinebeeindruckenden Eigenschaften behält, wenn es mit einer dünnen Silizium-Schicht bedeckt wird. Damit eröffnen sie für die Dünnschicht-Photovoltaik ganz neue Möglichkeiten.

„Wir haben untersucht, wie sich die Leitungseigenschaften von Graphen verändern, wenn es in einen Schichtstapel ähnlich dem einer Dünnschicht-Silizium-Solarzelle eingebaut wird. Wir waren selbst überrascht, dass wir nachweisen konnten, dass sich diese Eigenschaften dadurch nur wenig verändert haben“, erklärt Marc Gluba.

Sie stellten dafür Graphen auf einer Kupferfolie her, transferierten es auf ein Glas-Substrat und schieden dann eine dünne Schicht aus Silizium darüber ab. Dabei untersuchten sie zwei Varianten, wie sie auch in den gängigen Silizium-Dünnschicht-Technologien verwendet werden: zum einen eine Probe mit einer amorphen Siliziumschicht, in der die Silizium-Atome wie in einer erstarrten Schmelze ungeordnet sind; zum anderen untersuchten sie, wie sich ein typischer Kristallisationsprozess, der das ungeordnete Silizium in seine kristalline Phase überführt, auf die Eigenschaften des Graphens auswirkt.

Obwohl sich das Gefüge der Deckschicht infolge der Erwärmung auf mehrere hundert Grad Celsius komplett verändert, ist das vergrabene Graphen auch danach noch nachzuweisen.

„Das haben wir so nicht erwartet, aber unser Ergebnis zeigt: Graphen bleibt Graphen, auch unter Silizium“, sagt Norbert Nickel. Die Messungen der Beweglichkeit über den Hall-Effekt zeigten, dass die Beweglichkeit von Ladungsträgern in der eingebetteten Graphen-Schicht rund 30mal höher liegt als in konventionellen Kontaktschichten aus Zinkoxid. „Allerdings ist es noch sehr schwierig, diese nur eine Atomlage dünne Kontaktschicht mit äußeren Kontakten zu verbinden, daran müssen wir noch arbeiten“, erklärt Gluba. „Die Kollegen von den Dünnschichttechnologien spitzen schon die Ohren und wollen das einbauen“, sagt Nickel.

Die Forscher haben ihre Messungen an Quadratzentimeter großen Proben gemacht. Es ist praktisch aber möglich, viel größere Flächen mit Graphen zu beschichten. 

Die Arbeit wurde kürzlich in Applied Physics Letters Vol. 103, 073102 (2013) publiziert.
Autoren: M. A. Gluba, D. Amkreutz, G. V. Troppenz, J. Rappich, and N. H. Nickel

doi: 10.1063/1.4818461

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Science Highlight
    31.07.2024
    Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.
  • Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Nachricht
    29.07.2024
    Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Der Plan klingt bestechend: Neuartige Elektrolyseure sollen aus ungereinigtem Meerwasser mit Strom aus Sonne oder Wind direkt Wasserstoff erzeugen. Doch bei näherer Betrachtung zeigt sich, dass solche DSE-Elektrolyseure (DSE = Direct Seawater Electrolyzers) noch Jahre anspruchsvoller Forschung erfordern. Dabei sind neuartige Elektrolyseure gar nicht nötig, um Meerwasser für die Produktion von Wasserstoff zu verwenden – eine Entsalzung reicht aus, um Meerwasser für konventionelle Elektrolyseure aufzubereiten. In einem Kommentar im Fachjournal Joule vergleichen internationale Expert*innen Kosten und Nutzen der unterschiedlichen Ansätze und kommen zu einer klaren Empfehlung.

     

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.