HZB-Forscher stoßen Tor für die Festkörperphysik auf

An einem Siliziumkristall haben die Forscher gezeigt, wie man inelastische R&ouml;ntgenstreuung verst&auml;rken kann, bei der eine Frequenzverschiebung stattfindet.<br>&copy;HZB/E. Strickert

An einem Siliziumkristall haben die Forscher gezeigt, wie man inelastische Röntgenstreuung verstärken kann, bei der eine Frequenzverschiebung stattfindet.
©HZB/E. Strickert

Laserprozesse jetzt auch mit Röntgenstrahlen am Festkörper beobachtet

Die physikalische Grundlagenforschung wäre ohne die Vielzahl der heute verwendeten Röntgenmethoden nicht mehr denkbar. In der Festkörperphysik werden sie genutzt, bei biologischen Strukturuntersuchungen ebenfalls, und sogar Kunsthistoriker verdanken den Röntgenstrahlen viele Erkenntnisse. Nun haben Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) eine weitere Anwendungsoption erschlossen. Ein Team um Dr. Martin Beye und Prof. Alexander Föhlisch hat gezeigt, dass Feststoffe auch für Röntgenmessungen zugänglich sind, die auf nichtlinearen physikalischen Effekten beruhen. Bislang war dies nur bei Messungen mit Laserlicht möglich. Sie veröffentlichen ihre Arbeit in der online vorab erscheinenden Ausgabe der Zeitschrift Nature (DOI: 10.1038/nature12449). Ihre Ergebnisse können Einfluss darauf haben, wie neue Röntgenquellen zukünftig konstruiert sein müssen.  

So genannte nichtlineare Effekte sind die Grundlage der kompletten Laserphysik. Für Röntgenuntersuchungen schienen sie bislang nicht nutzbar zu sein. Die Physik, die den Röntgenmethoden bisher zugrunde liegt, basiert ausschließlich auf linearen Effekten. Das heißt, wenn die Strahlung auf ein Untersuchungsobjekt trifft, arbeitet jedes Lichtteilchen - das Photon - für sich alleine.

Anders bei Lasern. Die Energie- und Leistungsdichte von eingestrahltem Laserlicht kann so hoch werden, dass die Photonen zusammenarbeiten und beim Wechselwirken mit Materie nichtlineare Effekte auftreten. Dies hat zur Folge, dass Materialien bestimmte Farben des Lichts extrem verstärken. Mit anderen Worten: man bestrahlt einen Kristall mit grünem Licht, das ausgesendete Licht ist rot. Die ausgesendete Farbe kann dabei sehr genau mit Struktureigenschaften des untersuchten Stoffes korreliert werden.

Dass man solche Effekte nun auch mit weicher Röntgenstrahlung erzielen kann und Feststoffe diesem Messprinzip zugänglich sind, hat die Gruppe um Alexan¬der Föhlisch vom HZB nun mit Experimenten an der Hamburger Kurzpulsquelle FLASH am DESY nachgewiesen. „Der Wirkungsgrad von inelastischen Streuprozessen mit weicher Röntgenstrahlung ist normalerweise schlecht“, erläutert Martin Beye, der Erstautor der vorliegenden Arbeit: „Mit unserem Experiment zeigen wir, wie man inelastische Röntgenstreuung geschickt verstärken kann. Ähnlich wie beim Laser arbeiten alle Photonen zusammen und verstärken sich gegenseitig. Wir erhalten so ein sehr hohes Messsignal.“

Mit solchen Aufbauten an Röntgenquellen können zukünftig inelastische Röntgenstreuprozesse effizient genutzt werden, etwa um sehr schnelle Prozesse zu analysieren und zu verstehen. Zum Beispiel das Aufbrechen und Entstehen chemischer Bindungen, Anregungen in Quantenmaterialien (zum Beispiel Supraleitern) sowie ultraschnelle Schaltprozesse.

„Heutige Röntgenquellen sind für die Anwendung von stimulierter inelastischer Streuung gar nicht optimiert“, sagt Alexander Föhlisch. „Mit dem jetzt vorliegenden Ergebnis wissen wir, dass wir auch mit weicher Röntgenstrahlung nichtlineare Effekte nutzen können. Wir brauchen dafür Photonenquellen, die schnell hintereinander kurze Lichtpulse liefern können. Dies gilt es bei der Entwicklung zukünftiger Photonenquellen zu berücksichtigen.“

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.  

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.